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Abstract

This dissertation explores the application of Graph Neural Networks (GNNs) to Human Re-
source Management (HRM), focusing on the challenge of candidate-job matching (CJM).
Through theoretical contributions and applied studies, it demonstrates the potential of graph-
based approaches to enhanceHR analytics and personnel selection. The research addresses key
questions on representing HR data using deep learning, translating it into graph structures,
identifying effective GNN architectures, and applying them to HR tasks. Novel methods are
developed to convert variousHR data types into graphs, including Likert-scale questionnaires,
candidate profiles, and candidate-job pairs. Theoretical contributions include a topological-
based aggregation for GNNs using Generative Topographic Mapping, multiplicative integra-
tion as a graph convolution operation, and an efficient algorithm for computing Shapley In-
teractions in GNNs. These advancements improve GNN performance and interpretability.
Applied case studies leverage Large Language Models for feature extraction from CVs and job
descriptions, combining themwithGNNs for predictivemodeling. A comprehensive pipeline
is developed to process real-worldHRdata, construct purpose-built graphs for each candidate-
job pair, and perform inductive learning for CJM. Results show that graph-based approaches
outperform traditional methods in capturing complex relationships in HR data. The research
highlights key considerations for applying GNNs to HR, including handling class imbalance,
ensuring interpretability, and incorporating domain knowledge. This work bridges cutting-
edgemachine learningwith real-worldHRchallenges, offering newperspectives for addressing
modern recruitment complexities. It emphasizes the importance of keeping humans central in
the recruitment process while leveraging AI to augment decision-making, pointing towards a
future of more sophisticated, fair, and effective AI-driven recruitment systems.
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1
Introduction

The field of Human Resource Management (HRM)—the strategic management of people in
an organization—is undergoing a significant transformation driven by the rapid advancements
in Artificial Intelligence (AI) and Machine Learning (ML). As companies strive to attract, se-
lect, and retain top talent in an increasingly competitive landscape, there is a growing need for
more sophisticated and data-driven approaches to recruitment and personnel selection. This
dissertation explores the multi-disciplinary intersection of Deep Learning techniques, partic-
ularly Graph Neural Networks (GNNs), with real-world HR data to address one of the fun-
damental challenges in recruitment: finding the best candidate for an open job position or
Candidate-JobMatching (CJM).

HR data is inherently complex, multifaceted, and often unstructured. It covers an extensive
spectrum of information categories and types, such as structured data from application forms
and assessment tests, semi-structured data from resumes, and unstructured text from cover let-
ters, job descriptions, or interview transcripts. Traditional approaches to CJM often struggle
to integrate and analyze this diverse data, relying primarily on keyword matching or statistical
methods. These conventional techniques frequently fall short of capturing the intricate rela-
tionships within HR data, the contextual nuances of candidates’ experiences and ambitions,
and the subtle requirements of job roles within its broader organizational framework. In con-
trast, this research tries to address these challenges by leveraging graph structures and GNNs,
which are particularly well-suited for such tasks due to their ability to model complex relation-
ships and hierarchical structures. The intent is to capture and learn the rich interconnections
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that exist in the recruitment ecosystem, all by representing candidates, job postings, and their
various attributes as nodes and edges in a graph.

This work is carried out in partnership with Amajor SB S.p.A., an innovative benefit corpo-
ration based in Padua, Italy. Amajor’s mission is to guide small and medium-sized enterprises
in improving their business models, with a focus on entrepreneurial personal values. Their
unique consulting approach, encapsulated in their “4H Method” (Heart, Head, Hands, and
High-Value Results), emphasizes keeping people, their values, and their needs at the center of
every business decision. This dissertation is the outcome of close collaboration with Amajor’s
team and HR recruiters—who provided irreplaceable expertise and proprietary data—and ex-
plores this boundary betweenHR expertise and AI capabilities. We all strongly assert that AI’s
role should be to enhance and support human decision-making, not to replace it. Our ultimate
wish is to equip HR practitioners with richer insights and streamlined workflows, allowing
them to dedicate their efforts to the intricate and human-centered elements of hiring, which
require empathy, intuitive understanding, and sophisticated reasoning.

Throughout this research endeavor, we seek to answer several key questions:
1. How can real-world HR data, including candidate profiles, job descriptions, and assess-

ment questionnaires, be effectively represented and processed using Deep Learning?

2. How can HR data be translated into graph-based structures? What additional addi-
tional insights and benefits would this approach provide?

3. What are then the most effective GNN architectures and training methodologies for
learning such HR graphs?

4. What are the key considerations and best practices for applying GNNs to HR data, tak-
ing into account the unique characteristics and constraints of this domain?

5. How accurate and efficient are the AI-based methods that have been examined? What
are the limitations of these methodologies, and in what ways can they assist HR re-
cruiters in personnel selection?

This dissertation is structured in three parts. The first part provides valuable context to frame
the research domain: Chapter 2 provides the necessary background on HRM, the recruiting
process at Amajor, and an introduction to Deep Learning for graphs, while Chapter 3 reviews
the state-of-the-art inAI for recruiting andGNNs. The subsequent two parts first elaborate on
the theoretical contributions about GNNs, and then present the applied case studies. Namely:

• Chapters 4 to 6 illustrates the development of novel GNN architecture, aggregation
method and explainability technique;

• Chapters 7 and 8 develop approaches to create graph-based representation for HR data,
uch as candidate similarity networks based on profile or resume similarity.
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• Chapter 9 showcases the application of GNN to real-world candidate-job matching,
proving their potential and usefulness for HR recruiters;

In these chapters, we also offer insights and best practices for implementingML andGNNs in
the HR field, addressing the specific challenges and limitations encountered in practical appli-
cations, while also covering ethical considerations and biases in AI-driven recruitment. Finally,
Chapter 10 summarizes and concludes the thesis.

1.1 Publications and Contributions

The research presented in this dissertation has resulted in several publications and contribu-
tions to the literature, namely:

1. Frazzetto,Paolo, Luca Pasa,NicolòNavarin, andAlessandro Sperduti [2023a]. “Topol-
ogy preserving maps as aggregations for Graph Convolutional Neural Networks”. In:
Proceedings of the 38th ACM/SIGAPP Symposium on Applied Computing, SAC 2023,
Tallinn, Estonia, March 27-31, 2023. ACM, pp. 536–543. doi: 10.1145/3555776.
3577751
This paper introduces a novel graph aggregation method based on Generative Topo-
graphic Mapping, enhancing the expressiveness of GNNs (Chapter 4);

2. Frazzetto, Paolo, Luca Pasa, Nicolò Navarin, and Alessandro Sperduti [2024a]. “Be-
yond the Additive Nodes’ Convolutions: a Study on High-Order Multiplicative Inte-
gration”. In: Proceedings of the 39th ACM/SIGAPP Symposium on Applied Comput-
ing, SAC 2024, Avila, Spain, April 8-12, 2024. ACM, pp. 474–481. doi: 10.1145/
3605098.3636016
This work explores the use of Multiplicative Integration in graph convolution opera-
tions, improving the performance ofGNNson various benchmark datasets (Chapter 5);

3. Fumagalli, Fabian, Maximilian Muschalik, Paolo Frazzetto, Janine Strotherm, Luca
Hermes, Alessandro Sperduti, Eyke Hüllermeier, and Barbara Hammer [2025]. “Ex-
act Computation of Any-Order Shapley Interactions for Graph Neural Networks”. In:
The International Conference on Learning Representations (ICLR). Under review.
This international collaboration investigates and explains graph predictions by exactly
quantifying the contributions and interactions among multiple nodes (Chapter 6).

4. Frazzetto, Paolo, Muhammad Uzair-Ul-Haq, and Alessandro Sperduti [2023b]. “En-
hancing Human Resources through Data Science: a Case in Recruiting”. In: Proceed-
ings of the 2nd Italian Conference on Big Data and Data Science (ITADATA 2023),
Naples, Italy, September11-13, 2023. Vol. 3606. CEURWorkshopProceedings. CEUR-
WS.org. url: https://ceur-ws.org/Vol-3606/paper71.pdf
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This paper presents initial experiments on applying graph-based methods based on as-
sessment distances for candidate classification (Chapter 7);

5. Frazzetto, Paolo, Muhammad Uzair Ul Haq, Flavia Fabris, and Alessandro Sperduti
[2024b]. “From Text to Talent: A Pipeline for Extracting Insights fromCandidate Pro-
files”. In: The 3rd Italian Conference on Big Data and Data Science, (ITADATA 2024),
Pisa, Italy, September 17-19, 2024. Proceedings not yet available.
This work introduces a thorough pipeline for leveraging languagemodels andGNNs to
improve candidate-job matching using heterogeneous graph structures (Chapter 8);

On the other hand, Chapter 9 introduces a novel approach tomatch individual applicants to a
job position based on a specific graph structure, which represents a significant departure from
previously exploredmethods. While this chapter has not yet been peer-reviewed or published, I
believe it further demonstrates an excitingnewdirection forAI inHR,offeringboth theoretical
and practical advancements.

All these investigations are also raising even more questions and opening up new research
directions, pointing out someways formore sophisticated solutions for AI-driven recruitment.
Yet, we shouldnever lose sight of the highest goal: AImust assist recruiters in connectingpeople
with meaningful careers, allowing them to thrive within their organizations.
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Part I

Background
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2
Context

This section provides the necessary background and context for this research case. We start
with an overview of human resources management and its importance in organizations and
employee well-being. We then focus on the recruitment process and the challenges involved in
the candidates-vacancy alignment. Next, the company that enabled this research is presented—
Amajor SB S.p.A.. Then, we discuss how artificial intelligence techniques have been employed
in this specific domain. Finally, we provide a technical overview of Graph Neural Networks,
that will be leveraged to address the candidates-job matching.

2.1 Human ResourceManagement

Human Resource Management (HRM) is a vital function in organizations concerned with
effectively managing its people—its Human Resources—to achieve organizational goals. It
involves developing and implementing strategies, policies, and practices to optimize human
capital and ensure that the organization has the right people with the right skills in the right
roles [Armstrong, 2020]. HRM covers a wide range of activities, including:

Human Capital Management: obtaining, analyzing and reporting on data that informs the
direction of value-adding people management strategic, investment, and operational de-
cisions;

Corporate Social Responsibility: a commitment tomanaging the business ethically in order
to make a positive impact on society and the environment;
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Knowledge management: creating, acquiring, capturing, sharing, and using knowledge to
enhance learning and performance;

Resourcing: attracting and retaining high-quality people to ensure the organization has the
people it needs;

Engagement: the development and implementation of policies designed to increase the level
of employees’ engagement with their work and the organization;

Organization development: the planning and implementation of programs designed to en-
hance the effectiveness with which an organization functions and responds to change;

Talent management: the systematic attraction, identification, development, engagement, re-
tention, and deployment of individuals who are of particular value to an organization

Learning and development: providing an environment in which employees are encouraged
to learn and develop;

Employee relations: defining the organization’s intentions about what needs to be done and
what needs to be changed in how the organization manages its relationships with em-
ployees and their trade unions.

Employee well-being: meeting the needs of employees for a healthy, safe, and supportivework
environment.

The overall aims of HRM are to support the organization in achieving its objectives by de-
veloping and implementing HR strategies that are integrated with the business strategy, con-
tribute to the development of a high-performance culture, ensure the organization has the tal-
ented, skilled, and engaged people it needs, and build positive employment relationships [Brat-
ton, 2021].
TheHarvard framework ofHRM [Beer, 1984, 2015] initially emphasizes the human aspect

and considers people as assets rather than costs. It stresses the importance of congruence be-
tweenHRandbusiness strategy and gaining commitment through participation and informed
choice. The framework also recognizes the impact of situational factors on HR policy choices.
This approach views employees as critical resources that give organizations a competitive advan-
tage through their commitment, adaptability, and high-quality skills and performance. In fact,
effective HRM can positively impact organizational performance in several ways. Firms with
high-performance HR systems have significantly higher levels of firm performance [Becker,
1996; Guest, 2000]. These studies suggest that HR practices, particularly those focused on

8



acquiring, developing, and motivating employees, can lead to improved individual and orga-
nizational performance and outcomes. For example, specific HRM practices, such as job de-
sign, direct participation, and information provision, are associated with higher levels of per-
formance and work satisfaction [Guest, 2002]. Still, while research has shown an association
between HRM and performance, the causal links are not definitive [Guest, 2011].
Alongside their effect on organizational performance, the impact of HRM practices on em-

ployee well-being has emerged as a crucial area of research and development. These practices
aim to create a supportive work environment that enables employees to fulfill their potential
and feel valued within the organization. However, the relationship between company perfor-
mance and employee well-being is not always straightforward [Vanhala, 2006]. While effective
HRMpractices can be relatively good predictors of company performance, their direct impact
on employee well-being is less clear and often better explained by work-related factors such as
job content, workload, and social support. Organizations are beginning to develop a holistic
approach to HRM, addressing not only performance-related practices but also factors that di-
rectly influence employee well-being [Peccei, 2019; Salas-Vallina, 2021].
The recent report of De Neve [2023] is based on data from over 25 million surveys, repre-

senting the largest global study on work well-being. They demonstrated that employees who
are happy, have a sense of purpose, are satisfied with their jobs, and experience low stress levels
help increase firm performance—outperforming stock-market benchmarks. Surprisingly, they
also reveal that 78% of employees are not thriving.

As organizations face ongoing challenges to be agile, innovative, and competitive, the role
of HRM will only continue to grow in strategic importance. Implementing HRM practices
that promote both employee well-being and organizational success in a sustainable manner is,
therefore, fundamental in today’s society.

2.1.1 Resourcing

People resourcing is a crucial function within HRM that focuses on ensuring an organization
has the right people with the necessary skills and capabilities to achieve its strategic objectives.
It encompasses a variety of activities, including workforce planning, recruitment and selection,
talent management, and managing employee turnover and absence [Armstrong, 2020]. This
work is positioned within recruitment and selection—the task of finding and hiring the best-
qualified candidates for precise job openings.

Recruitment is the process of attracting a pool of qualified candidates. It involves analyzing
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the requirements of a job, considering the competencies and skills necessary for success, and
then using various sourcing strategies to identify suitable candidates [Breaugh, 2013]. Com-
mon recruitment methods are, for instance:

• Advertising job postings on the organization’s website, job boards, or social media;

• Employee referrals;

• Recruitment agencies or executive search firms;

• Job fairs or campus recruitment events;

• Networking and headhunting.

The choice of recruitment methods depends on factors such as the nature of the job, the ur-
gency of the hiring need, and the available budget.

On the other hand, the selection involves assessing the suitability of candidates attracted
through the recruitment process and choosing the best person for the vacant job [Sekiguchi,
2004]. It typically consists of several stages:

1. Screening applications and resumes/CVs to identify candidates whomeet theminimum
requirements;

2. Conducting interviews (phone, video, or in-person) to assess candidates’ competencies,
experience, and fit with the organization;

3. Administering assessments such as personality tests, cognitive ability tests, or work sam-
ples;

4. Making a job offer to the selected candidate(s).

The selection process aims to gather relevant information about candidates andmake a fair and
objective decision based on their merits and suitability for the role.

Role of theHRRecruiter

HR recruiters play a vital role in the recruitment and selection process. They work closely with
hiringmanagers to understand the job requirements and develop an effective sourcing strategy.
Key responsibilities of an HR recruiter include:

• Conducting job analysis and preparing job descriptions and person specifications;

• Identifying appropriate sourcing channels and advertising job openings;

• Screening applications and shortlisting candidates;

• Conducting interviews and assessments;

• Coordinating the hiring process and communicating with candidates;
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• Extending job offers and negotiating terms of employment;

• Onboarding new hires and ensuring a smooth integration into the organization.

HR recruiters need to have a good understanding of the organization’s culture, values, and
talent needs. They should also possess strong interpersonal and communication skills as they
interact with a wide range of stakeholders throughout the recruitment and selection process.

Job Descriptions and Postings

Job descriptions and postings are essential tools in the recruitment process. A job description
(JD) is awritten report that outlines the essential functions, responsibilities, qualifications, and
reporting relationships of a job. It serves as a basis for creating job postings (JP), which are ad-
vertisements used to attract candidates to apply for the vacant position. An effective JP usually
includes:

• Job title and location;

• Overview of the organization and its culture;

• Key responsibilities and duties;

• Required qualifications, skills, and experience;

• Desired competencies and attributes;

• Compensation and benefits information;

Well-crafted job descriptions and postings help attract the right candidates, set clear expecta-
tions, and provide a framework for the selection process.

2.1.2 Challenges of Screening and Candidate-JobMatchin

While recruitment and selection processes aim to identify and hire the most suitable candi-
dates for job openings, HR professionals often face challenges in effectively screening appli-
cants and ensuring a goodfit between candidates and job vacancies—theCandidate-JobMatch-
ing (CJM) [Nikolaou, 2015].

Information Overload One common challenge is dealing with a large volume of appli-
cations, particularly for highly sought-after positions. Screening a large number of resumes and
applications can be time-consuming and resource-intensive. HR recruiters must efficiently re-
view the information candidates provide and quickly identify those who meet the minimum
requirements for the role. This can be particularly challenging when candidates have diverse
backgrounds or when the quality of applications varies significantly.
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Limited Information Another challenge is the limited information available in candi-
dates’ resumes and applications. Although these documents provide an overview of a candi-
date’s qualifications and experience, they may not give a complete picture of their skills, com-
petencies, and potential fit with the organization’s culture. HR recruiters often need to rely
on interviews and assessments to gather more comprehensive information about candidates’
suitability for the required role.

AssessingFit Ensuring a goodfit between candidates and vacancies is crucial for successful
hiring outcomes, but it can be challenging to assess. Fit involves not only aligning candidates’
technical skills and qualifications with the job requirements but also their compatibility with
the organization’s culture, values, and work environment [Kristof, 1996]. Assessing fit often
requires going beyond the information provided in resumes and applications and using tech-
niques such as behavioral interviewing and cultural fit assessments.

Biases inScreening Unconsciousbiases can alsopose challenges in screening andcandidate-
job matching. HR recruiters may inadvertently be influenced by factors such as a candidate’s
name, age, gender, or educational background, leading to biased decision-making. Tomitigate
these biases, organizations can use structured screening processes, blind resume reviews (by re-
moving identifying information), or diverse interview panels.

Skill Gaps In some cases, there may be a mismatch between the skills and qualifications of
available candidates and the job requirements. This can be particularly challenging in rapidly
evolving industries or for highly specialized roles. HR recruiters may need to consider alter-
native sourcing strategies, such as targeting passive candidates or partnering with educational
institutions to develop talent pipelines.

To address these challenges, HR professionals can leverage various strategies and technolo-
gies, for example:

• UsingApplicant Tracking Systems (ATS) to efficientlymanage and screen large volumes
of applications;

• Developing structured screening criteria and interview guides to ensure consistency and
fairness in evaluating candidates;

• Conducting skills assessments and work sample tests to gather objective data on candi-
dates’ abilities;

• Providing interview training to hiring managers to minimize biases and improve the
quality of candidate evaluations;

• Analyzing data on past hiring successes and failures to continuously refine and improve
screening and selection processes.
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Finding the best candidate is not a trivial task and requires time and experience. For these
reasons, alongwith the above-mentioned strategies, novel technological solutions are emerging
aiming to support HR recruiters [Kuncel, 2014; Strohmeier, 2022].

2.2 Amajor SB

This section introduces the consulting firm that enabled and founded this research project,
Amajor SB.1 It is a benefit corporation—based in Padova, Italy—whose main activities con-
cern proprietary consulting services to guide small- andmedium-sized enterprises and improve
their business model through the entrepreneurs’ values. Authentic and diverse datasets were
obtained through the cooperationwithAmajor and its team, enabling the analysis and develop-
ment of models that closely mirror the challenges and complexities faced by HR practitioners.
The relevance, applicability, and alignment of the research findings with the practical needs of
the industry are ensured through this applied research approach, leading to more effective and
impactful HR recruitment strategies. Amajor provides different services, and to better frame
the scope of this work, they are presented in the remaining part of this section.

2.2.1 Entrepreneurial Assessment

Amajor’s first service is an analysis that beginswith theEntrepreneurialAssessment. This assess-
ment analyzes the operational habits of entrepreneurs, highlighting both the challenges they
face in managing their businesses and the untapped potential they possess as leaders within
their companies.

2.2.2 A+ Questionnaire

Oneof the tools used for this assessment is the proprietaryA+Questionnaire (QST),which pro-
vides feedback on each person’s potential and how they can best harness it (see Fig. 2.1 for an
example). After working with more than 120 clients over a period of five years, Amajor’s team
has found that understanding entrepreneurs’ habits is essential to helping both them and their
companies realize their full potential—the entrepreneur’s habits have a significant impact on
the entire organization and its members. The A+ Questionnaire was specifically designed for
this purpose: to provide concrete insights into how each person’s habits influence their behav-
ior, efficiency, and well-being. The A+Questionnaire is first administered to the entrepreneur

1Corporate website: https://www.amajorsb.com/
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Figure 2.1: Example of the A+ Questionnaire. The outcomes of the questions yield 18 nu-
merical traits obtained through a proprietary algorithm. The colors group these traits based
on their affinity (self-fulfilment, interpersonal skills, management, execution, self-affirmation).
Each trait takes numerical values in the range [−100, 100]. This visualization, currently em-
ployed by the HR team, was also a side-project of this research.
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and then to the company’s first line ofmanagement. This process allows the design of a growth
plan that aligns with the company’s needs and desires while identifying potential strengths to
leverage for business development, as well as areas for improvement that may require targeted
actions to prosper. More detailed information about the A+Questionnaire is provided in Sec-
tion 7.2.4.

2.2.3 Business Assessment

Following the Entrepreneurial Assessment, two types of business analysis services can be devel-
oped: Entrepreneurial Line and Business Analyses.

The former is based on the “4H Method” (Heart, Head, Hands, and High-Value Results)
[Peronato, 2022]. This method involves several stages, depicted in Fig. 2.2: Heart, defining
the company’s core values and vision; Head, developing the mission and a business expansion
plan; Hands designing the organizational chart, defining each role’s purpose, and establish-
ingKey Performance Indicators (KPIs); High-ValueResults, implementing development plans
and monitor outcomes. This strategic service identifies the company’s core values as a driver
for growth. It starts with discovering the values of entrepreneurs or topmanagement, followed
by strategy formulation and role identification, culminating in organizational growth. It aligns
employees with the entrepreneur’s vision, fostering motivation and engagement, leading to in-
creased performance and sustainable growth.

Figure 2.2: Amajor 4H Method. Starting from the entrepreneur’s values, mission, and vi-
sion, business processes are implemented to achieve the company’s growth and employees’ well-
being and engagement.
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Other business analysis services offer various depths of investigation through specific question-
naires, administered anonymously or not, depending on the company’s needs.
PersonnelAssessment: This involves analyzing human resources, startingwith topman-
agement. It identifies employees’ strengths, potential roles, and hidden potential within the
company. This helps determine if individuals are optimally positioned within the organiza-
tion.
ClimateAssessment: Conducted anonymously across departments, this surveymeasures
the organizational climate, reflecting how employees perceive the work environment and lead-
ership. It evaluates communication, the extent to which employees feel valued, and the align-
ment with company values. This assessment provides a clear picture of the company’s internal
culture and is a critical tool for improving employee well-being and cohesion.

OrganizationalAssessment: Throughquestionnaires and interviews, this analysis iden-
tifies inefficient processes or communication barriers. It helps understand how employees ex-
perience and contribute to the company’s organization and its evolution.

InnovationandBusinessDevelopmentAssessment: This analysis evaluates the com-
pany’s ability to innovate and remain competitive, identifying the key drivers that fuel its effec-
tiveness.

By combining all these areas with the Entrepreneurial Assessment, Amajor helps companies
identify their true purpose, which is a key outcome of the entire analysis process.

2.2.4 Resourcing Services

The goal of the recruitment and selection processes at Amajor is to help entrepreneurs find
individuals who not only possess the necessary skills and knowledge required by the company
but are also aligned with the company’s expansion plans, values, and vision. When providing
recruitment services, the objective is to identify candidateswho can both thrivewithin the com-
pany’s framework and contribute to its growth. This approach ensures that new hires are not
only qualified for the role but also motivated by the company’s mission and vision, allowing
them to grow alongside the company. The recruitment and selection process has become a
strategic service, as it allows companies to find individuals who align with specific roles and the
company’s broader vision, thus unlocking the full potential of their employees. The resourcing
process follows these stages, graphically summarized in Fig. 2.3:

1. Collection of client needs for the role: The Recruiters conduct a job analysis with the
client, defining the role’s requirements and characteristics (Job Analysis).
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2. Validation of the Job Analysis: TheRecruiters study whether the required role fits the
client’s needs, particularly verifying alignment between required skills and the offered
salary based on market data.

3. Analysis of the internal database: The Recruiters screen existing profiles in the com-
pany’s database to identify potential candidates that match the role.

4. Creation and publication of job postings: The Recruiters create job postings and de-
termine the most appropriate channels for publication based on the role’s specifics and
the company’s location.

5. Active search or Talent Attraction activities: If there are insufficient candidates from
the postings, the Recruiter initiates an active search through online job portals or con-
tacts relevant networks like universities, training centers, and schools (also known as
head hunting).

6. Management of applications: The Back-Office area organizes incoming applications,
files them into individual folders, and creates a candidate profile in the database with
their respective information.

7. Sending of A+ Questionnaire and data update: The back office area sends the A+
Questionnaire to all candidates and constantly updates the database with the results.

8. Screening: The Recruiters evaluate whether candidates’ CVs and A+ Questionnaire
results align with the client’s requirements before proceeding with an initial individual
interview.

9. Interview scheduling and feedback: The back office area schedules interviews with
candidates who passed the screening phase and sends feedback emails to those whowere
not selected.

10. Selection interviews: The Recruiters conduct the first interview to assess the candi-
date’s suitability to move forward in the selection process.

11. Scheduling technical interviews and feedback: The back office area organizes any nec-
essary technical interviews with specialized staff for suitable candidates and sends feed-
back emails to those not selected.

12. Feedbackmanagement and organization of candidate presentation: The back office
area communicates feedback to candidateswhowerenot selected in thefinal phase,while
the Recruiters contact candidates to present them to the client and arrange the meeting.

13. Candidate presentation: The Recruiters oversee the presentation of candidates to the
client and assist in the final selection process.

14. Support in negotiation: Once the suitable candidate is identified, the Recruiters facili-
tate smooth negotiations regarding economic terms.
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15. Onboarding plan: The Recruiters support the client in defining an effective onboard-
ing plan aligned with the company’s expansion project.

16. Monitoring of the onboarding process: The Recruiters monitor the new employee’s
progress for three months, addressing any needs that arise during this period.

The services and process described above are undeniably complex, costly, and time-consuming,
requiring a significant investment of both human and financial resources. To address these
challenges and enhance the efficiency of their business model, Amajor is committed to invest-
ing in research and development activities. Indeed, this research covers the process from the
initial application screening to the shortlisting of candidates and, ultimately, the final hiring de-
cisions, leveragingHR data collected at every stage of this extensive process. However, Amajor
firmly believes that while AI can optimize processes, the core of itsmission remains unchanged:
keeping people, their values, and their needs at the center of every decision and action. This
human-centric approach continues to guide the company’s strategic growth and ensures that
technology serves to elevate, rather than replace, the personal touch in its services.

Figure 2.3: Overview of Amajor’s resourcing services process. The scope of this research en-
compasses the stages from the initial screening of applications to the shortlisting of candidates
and subsequently the final hiring decisions, while using HR data gathered at each step of this
comprehensive process.
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2.3 AI in HR

In a nutshell, Machine Learning (ML) is a subset of Artificial Intelligence (AI) that enables
systems to learn from data, identify patterns, and make decisions with minimal human inter-
vention [Russell, 2016]. Such technology has emerged as a transformative force in many do-
mains [Van Esch, 2019], and HRM is no exception [Hmoud, 2019; Strohmeier, 2022; Vron-
tis, 2023]. ML offers broad and promising potential in theHRdiscipline while also presenting
some serious challenges. Broadly speaking, the process of implementingMLmethods typically
follows several key steps: domain understanding, data understanding, data preparation, model
generation, model evaluation, and model application. This process can be translated into the
HR field and executed either explicitly by HR professionals using ML software or embedded
within HR-specific software by existing vendors and providers. ML algorithms in HR can be
broadly categorized based on their functions, including prediction, classification, anomaly de-
tection, segmentation, and association. These algorithms can utilize various types of data, rang-
ing from structured static data (e.g., payroll information) to unstructured data (e.g., employee
documents) and even stream data (e.g., social media data).

The application of ML in HR offers several potential benefits. It can enhance decision-
making processes, improve problem-solving capabilities, and even automate certain HR tasks.
ML is seen as a key enabler of concepts such as big HR data analytics and algorithmic HR
decision-making [Bondarouk, 2017; Marler, 2017], and organizations leveraging data-driven
approaches have long demonstrated improved financial and operational performance [McAfee,
2012]. However, the implementation of ML in HR is not without challenges. Technical chal-
lenges include the potential for spurious correlations, conservatism in suggestions due to lim-
ited historical data, lack of publicly available datasets, and replication of existing biases or errors.
Ethical and social threats are also significant, including concerns about discrimination, privacy
violations, and the opacity of ML processes [Tambe, 2019; Burrell, 2021].

ResearchonMLinHRis currently dividedbetween twomain streams: methodical-technical
research focusing on the development of ML artifacts and managerial-behavioral research ex-
amining the application and implications of ML in HR contexts [Strohmeier, 2022]. Future
research directions include the need for more interdisciplinary collaboration, improved theo-
retical foundations, and increased empirical investigations into the real-world impacts of ML
in HR—as in the scope of this investigation.

It is clear that ML has the potential to transformHR practices significantly. However, real-
izing this potential will require careful navigation of both technical and ethical challenges, as
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well as continued research anddevelopment in this rapidly advancing field. For amore in-depth
overview of the state-of-the-art of AI in HR, we refer to Section 3.1.

2.3.1 AI Act

It is worthmentioning the EuropeanUnion’s approvedArtificial Intelligence Act (AI Act) [AI
Act, 2024], that represents a significant development in the regulation of AI systems and it has
a particular relevance to the domain of human resources as well. TheAIAct categorizes certain
AI applications in HR as “high-risk”, reflecting the potential for these systems to significantly
impact individuals’ lives and opportunities. Namely, AI applications in HR are mentioned in
Annex III.4.(a):

“AI systems intended to be used for the recruitment or selection of natural per-
sons, in particular to place targeted job advertisements, to analyse and filter job
applications, and to evaluate candidates”.

Such applications are thus subject to stringent requirements to ensure fairness, transparency,
and accountability. These requirements emphasize the importance of implementing measures
to evaluate AI systems, ensure traceability, properly inform all stakeholders, and keep human
oversight on the whole process. They pose significant challenges for HR departments and AI
developers, and organizationsmust invest in robust datamanagement practices to complywith
these regulations. Nevertheless, theAIAct also offers new opportunities and promotes respon-
sible AI development and use. It could help address some of the ethical and social concerns
associated with AI in HR and avoid blunders committed in the past [Dastin, 2018]. It may
also drive innovation in explainable AI and fair ML algorithms, potentially leading to more
trustworthy and effective AI systems in HR, ultimately shaping the future development and
application of AI in HR, and encouraging a more responsible and human-centric approach to
AI-driven HR practices.

It is important to note that the research presented in this thesis is purely exploratory and
conceptual in nature. This work has not been implemented in any production setting and is
not intended for immediate practical application. The study utilizes historical data and records
exclusively, serving as a proof-of-concept to explore potential applications of graph neural net-
works in candidate-job matching. The findings andmethodologies discussed herein are meant
to contribute to the academic discourse and provide a foundation for future research. They
should not be interpreted as ready-for-deployment solutions in real-world HR processes with-
out further development, testing, and ethical considerations.
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2.3.2 Privacy Regulations

Privacy is a paramount concern in the field of HR, especially when dealing with the sensitive
personal data of job applicants. This sensitive data falls under specific legal frameworks, most
notably the General Data Protection Regulation (GDPR) in the European Union [GDPR,
2016]. This regulation mandates that organizations handle personal data with care, ensuring
its confidentiality, security, and lawful processing. Therefore, HR professionals must navigate
these specific legal requirements by implementing robust data protection measures, obtaining
informed consent from candidates, and ensuring secure storage and transmission of personal
information.
In the scope of this work, we have taken extensive measures to handle data in a compliant

manner. Prior to data collection and questionnaire administration, candidates were duly in-
formed about the purpose and scope of data processing and then provided their informed con-
sent. In addition, we ensure anonymity by removing any personally identifiable information
from the datasets. We processed the data in its aggregate structure without any additional bias.
Besides, we adhere to data retention policies and will promptly delete the original records once
they are no longer necessary for the intended purposes. In this fashion, we aim tomaintain the
confidentiality and trust of the candidates’ personal data, along with promoting open science
and productive discussions in this field.

2.4 Deep Learning for Graphs

Graphs are mathematical objects effectively used to represent entities and relations thereof.
Graph-structured data appears in many domains and real-world applications [M. Newman,
2018], such as molecular chemistry [Gilmer, 2017; Stärk, 2022], water distribution networks
[Ashraf, 2023], sociology [Borgatti, 2009], power grids [Hansen, 2023], finance [Easley, 2010],
physics [Sanchez-Gonzalez, 2020], or epidemiology [Pastor-Satorras, 2001; Navarin, 2024].
Deep learning has shown astounding results on tasks for non-structured data, such as images

or texts, so it is not surprising that deep learning models for graph data have been developed in
recent years [Bacciu, 2020; L. Wu, 2022]. The initial definition of neural networks designed
for graphs was introduced several years ago [Sperduti, 1997], paving the way for the concept of
GraphNeuralNetworks (GNNs) [Scarselli, 2008;Micheli, 2009]. Lately,motivatedbyCNNs,
RNNs, autoencoders, transformers, and new advancements in deep learning, researchers are
rapidly developing new techniques and approaches to handle the complexity of graph data.

21



2.4.1 Notation and Preliminaries

In mathematical terms, a graph is defined as a tuple G = (V , E ,X,Y) where V denotes the
set ofN nodes (or vertices), E ⊆ V × V denotes the set of edges (or links). If nodes v and u
are connected, then (v, u) ∈ E . All edges can be represented as adjacency matrixA ∈ RN×N ,
whose elements auv = 1 ⇐⇒ (u, v) ∈ E , otherwise auv = 0. This work deals with
undirected graphs, i.e. auv = avu ∀ v, u ∈ V . The matrix X ∈ RN×S encodes the node
attributes (or features), andxv ∈ RS represents the features of node v. The set of nodes linked
to node v, also known as neighborhood, is denoted asNv. The amount of edges belonging to
a node defines its degree, dv ∈ N. Each graph, or its nodes, can have labels denoted with the
setY . Their predictions are represented as Ỹ .
In the context of GNNs, the message-passing layer is crucial for propagating information

across the graph [Bronstein, 2021]. GNNs iteratively learn node representations hv by aggre-
gating information fromneighboring nodes. Namely, the ℓ-th layer of amessage-passingGNN
can be formulated as:

h(ℓ)
v = ϕ(ℓ)

(
h(ℓ−1)
v ,⊕

({
ψ(ℓ)(h(ℓ−1)

v ,h(ℓ−1)
u ) : u ∈ Nv

}))
(2.1)

where

• h
(ℓ)
v ∈ RN×D(ℓ) is the updated feature vector for node v;

• h
(ℓ−1)
v ∈ RN×D(ℓ−1) is previous feature vector for node v, with h(0)

v = xv;

• ϕ(ℓ) is a learnable update function;

• Nu is the neighbourhood of node u;

• ⊕ represents a differentiable, permutation-invariant aggregation function (e.g., sum,
mean, max) of messages of the neighborhood of node u;

• ψ(ℓ) is a learnablemessage function, computing the message vector sent from node u to
node v.

The general idea of message passing is depicted in Fig. 2.4, and the above formulation allows
for various implementations of GNNs for different ϕ, ψ, and⊕, as presented in Section 3.2.1.
After ℓ iterations of message passing, the feature vector h(ℓ)

v encapsulates both the structural
information and the content of the ℓ-hop neighborhood of node v. This rich representation
enables both node-level and graph-level tasks. For tasks that require predictions at the node
level, we define a node classification function fv : G → Ỹ . This function typically employs a
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Figure 2.4: Illustration of feature propagation in GraphNeural Networks. Left: Initial graph
with each node having a unique feature (represented by a colored block). Right: The same
graph after one message passing layer, where each node’s features now include information
from its neighbors and will be processed by ϕ,ψ, and⊕. This process allows local information
to spread across the graph structure, enabling the network to learn both local and global pat-
terns.

Multi-Layer Perceptron (MLP) that operates directly on the node embeddings:

fv(G) = MLP(hL
v ) (2.2)

where L is the final layer of message passing. For tasks that require a single prediction for the
entire graph, we define a graph classification function f : G → Ỹ . This function first aggre-
gates node embeddings using a global pooling operation over all its nodes

⊕
, then applies an

MLP (also known as readout):

f(G) = MLP
(⊕({

hL
v : v ∈ V

}))
(2.3)

The pooling operation
⊕

is crucial for graph-level tasks as it must transform a set of node em-
beddings of variable cardinality into a fixed-size graph embedding, while being permutation
invariant or equivariant. For a more in-depth description of pooling, refer to Section 3.2.2.
After the message passing layers and potential pooling operations, the final layer of a GNN
typically projects the node or graph representations into the desired output space. For a classi-
fication task with C classes, this often involves a linear transformation followed by a softmax
activation:

ỹ = softmax (f(G)) . (2.4)

The model is then trained by minimizing a loss function L, which measures the discrepancy
between the predicted outputs and the true labels. For multi-class classification, a common
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choice is the cross-entropy loss:

L = −
C∑
i=1

yi log(ỹi) (2.5)

where yi is the true label (typically one-hot encoded) and ỹi is the predicted probability for
class i. For clarity of exposition, several important components that are typically part ofGNNs
andneural networks in general havebeenomitted. These compriseactivation functions,dropout,
regularization, normalization and residual connections.

In conclusion, the specific choices and design configurations of aGNNoften depend on the
particular task and dataset at hand, and this will consequently be discussed.
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3
RelatedWorks

This chapter provides a comprehensive review of the existing literature relevant to our research
on GNNs for candidate-job matching (CJM). We begin by examining the current state of the
art in recruitment andCVmatching techniques, highlighting both traditional approaches and
recent advancements in machine learning-based methods. Subsequently, we present the foun-
dational works on GNNs, with a particular focus on three critical aspects: graph convolutions,
pooling strategies, and explainability. These areas form the theoretical backbone of our pro-
posed approaches and are further developed as novel contributions presented in Chapters 4
to 6. With these understandings from the recruitment sector and with the latest technical ad-
vances in GNNs, we set the stage for our investigation on GNNs applied to HR data in Chap-
ters 7 to 9.

3.1 AI for Resourcing

The previous chapter illustrated how the application of AI to personnel selection represents a
significant development inHRM. Laumer [2022] and König [2022] provide a comprehensive
overview of this emerging area, highlighting both its potential and challenges. This section
expands their key insights and provides relevant references for the context of this thesis. First,
someopen challenges are presented; then, the concept ofPerson-EnvironmentFit is introduced
to adequately frame the literature. This allows us to present the related works, leaving some
future research directions in the end.
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3.1.1 Challenges and Opportunities of AI in Personnel Selec-
tion

As presented in Section 2.1.2, HR recruiters often struggle with several limitations, including
applicants’ tendency to present an overly favorable image, human biases in decision-making,
cognitive limitations of assessors, and inadequate utilization of potentially valuable data. These
challenges create an opportunity for AI and ML approaches to potentially improve the effi-
ciency and effectiveness of selection processes.

ML techniques can be applied to various aspects of the selection process, from analyzing
video interviews to evaluatingCV.The use ofML in personnel selection offers several potential
advantages—it allows for the efficient processing of large, unstructured datasets from various
sources and the integration of multi-modal information for more comprehensive evaluations.
MLapproachesmay also reduce certainhumanbiases, increase speed and efficiency in screening
large applicant pools, and discover novel insights and patterns in applicant data.

Despite its potential, the application of ML in personnel selection faces several significant
setbacks [Goretzko, 2021]. Onemajor concern is the potential forMLmodels to inadvertently
perpetuate existing biases present in training data or human decision-making. Legal and ethi-
cal concerns arise from the use of certain applicant characteristics in ML models, which may
raise discrimination issues. Applicants often have negative perceptions of automated evalua-
tion systems, which could impact their willingness to engage with organizations using such
technologies. Additionally, HR professionals may be reluctant to rely on ML systems, pre-
ferring to trust their own judgment. The “black box” nature of many ML models also poses
challenges for transparency and explainability, making it difficult to understand and justify
their decisions. Another significant issue is the generalizability of MLmodels: systems trained
on data from one context may not performwell when applied to different organizations or job
roles, limiting their broad applicability.

3.1.2 Survey Based on the Person-Environment Fit

Resourcing is complex and multi-faceted, and so are its applications of AI. Their foundations
and scope are built upon the concept from industrial-organizational psychology of Person-
Environment (PE) fit, which describes an individual’s relationship to their work environment
[Jansen, 2006]. Accordingly, there is no one-dimensional view of this fit; instead, it consists of
and depends on various multidimensional factors: the person–vocation (PV) fit, the person–
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job (PJ) fit, the person-organization (PO) fit, the person-person (PP) fit, and the person-team
(PT) fit. In this work, the PJ fit, i.e. the match of a person’s characteristics and skills with
those of a specific job, is primarily addressed. However, it is relevant to note that Amajor’s re-
cruiting services are part of a broader business development plan. Candidates are selected and
hired also based on their PO fit, considering a supplementary fit between the organization’s
and candidates’ characteristics and values. A good PO fit positively influences the individual’s
satisfaction, willingness to perform, and commitment to the organization. Indeed, the purpose
of recruitment is to identify the most appropriate candidate for an open role. In this context,
“best” refers not to being literally the top individual but rather the most suitable person in re-
lation to the various attributes of the PE fit and its specific characteristics of each dimension.
Before going into the details of related works, Laumer [2022]’s literature review excellently

encapsulates the majority of the current state-of-the-art, offering an overview of the primary
areas of investigation and the methodologies employed. The authors identified 56 papers that
report onAI-based approaches for predicting PEfit dimensions. These selected studies focused
on three main areas of resourcing: identifying potential candidates (9 papers), pre-selection of
candidates—theCJM—basedonCVsor additional information (36papers), and further assess-
ment of candidates (15 papers). The authors observed that most of the research concentrated
on particular aspects of PE fit, namely PJ fit (34 papers), POfit (8 papers), and PTfit (3 papers).
Notably, none of the identified papers explicitly focused on PV or PP fit. For what concerns
the ML approaches employed in the reviewed studies, they have been grouped as follows:

• Decision Trees (18 papers)

• Deep Neural Networks (10 papers)

• Logistic Regression (9 papers)

• Random Forests (9 papers)

• Support Vector Machines (8 papers)

• Neural Networks (8 papers)

• K-Nearest Neighbors (8 papers)

• Naïve Bayes (5 papers)

Additionally, 19 papers focused on other AI techniques such as recommender systems, data
mining, natural language processing (NLP),matching algorithms, fuzzy logic, networkmodels,
and sentiment analysis.
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While this study primarily focuses on the widespread scenario of PJ fit and CJM, it is note-
worthy that, to the best of our knowledge, this is the pioneering research utilizing GNN in the
HR domain.

3.1.3 State of the Art

This section provides an overview of key studies and findings in the rapidly evolving field of AI
in resourcing. Current research trends indeed demonstrate promising results in areas such as
predicting personality traits and job performance from written materials using NLP, inferring
personality traits and communication skills fromaudio or videodata, and automating theCJM.
However, it is important to note thatmuch of the following research comes from computer sci-
ence rather than traditional industrial-organizational psychology or management studies, and
there is still a lack of robust multi-disciplinary validation studies in real-world hiring contexts.

Early works dealing withCJM are the ones by Yu [2005] and Yi [2007], in which they adopt
information retrieval techniques to parse relevant sections of semi-structured resumes. On the
other end, the work of Kessler [2008] implemented a k-nearest neighbors (kNN) model for
CJM to identify key attributes from CVs and cover letters, such as skills, work history, salary
expectations, and address. They developed a vector representation for both candidate profiles
and job listings to determine the optimal model for ranking candidates based on job compat-
ibility. The machine learning algorithm was trained on a dataset comprising 25 job postings
and 2,916 candidate profiles, each labeled with a job fit score, achieving an accuracy of 0.64.

Faliagka [2014] useddata fromonline social networkprofiles andblogs to predict person-job
fit. The suggested system gathers objective criteria from the LinkedIn profiles of the applicants
and semantically matches these with the job requirements. It further deduces their personality
traits through linguistic analysis of their blog posts. Their decision tree algorithm performed
well in predicting human experts’ rankings of job fit, suggesting the potential of using digital
footprints in selection processes.

Guo [2016] developed RésuMatcher, a personalized resumes-job matching system. It uses
information extraction tools to parse resumes and job descriptions into structured models. It
then calculates similarity scores between resumes and jobmodels using an ontology-based sim-
ilarity measure. Jobs are ranked based on these similarity scores, and their evaluation shows
improvements over other information retrieval approaches, such as TF-IDF. NLP techniques
have been increasingly exploited by Campion [2016], which conducted one of the first large-
scale studies applying them to personnel selection. They analyzed approximately 40,000 ac-
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complishment records from applicants to a large U.S. public employer. Using NLP, they con-
structed automatically scored ratings that correlated highly (0.60 to 0.65 range) with human
ratings. This studyfirst demonstrated thepotential ofAI to automateparts of theCVscreening
process. Sajjadiani [2019] utilized NLP approaches to analyze online applications for teaching
positions in Minnesota. They estimated work experience relevance and categorized turnover
history attributions. Their findings showed that certain attribution categories (e.g., “avoiding
bad jobs”) negatively predicted teacher performance and were linked to involuntary turnover.

Whereas NLP just uses text material, other researchers focused on other modalities (audio
and visual) or on combining data fromdifferentmodalities. For example,Naim [2016] focused
on automating the analysis of job interviews. These interviews were recorded, transcribed, and
then rated by nineMechanical Turkers regarding the overall interview performance. They then
used ML algorithms to evaluate 138 mock interviews based on facial, speech, and lexical fea-
tures. Their results showed that speech and lexical features were particularly important in pre-
dicting overall interview ratings. Escalante [2020] developed a dataset of 10,000 short video
clips, each annotated with a score by Mechanical Turkers. They used various ML approaches
to predict these scores using audio and visual information. While primarily a proof-of-concept
study, it demonstrated the feasibility of using ML for rapid assessment of video applications
and candidates’ personalities.

For what further concerns the PJ fit, deep-learning models were successfully used by Zhu
[2018]. The authors proposed a convolutional neural network (CNN)-based model called
Person-Job FitNeuralNetwork (PJFNN) to address the task of CJM.Themodel jointly learns
representations of job requirements and candidate qualifications by mapping both resumes
and jobpostings into a shared latent space. PJFNNidentifies specific job requirements that can-
didates fulfill andmeasures the alignment between their experiences and the job’s needs. Using
historical job application data from a large tech company, themodel significantly improves pre-
diction performance for PJ fit compared to traditionalmethods. Likewise, Yan [2019] explored
how latent preferences from past interview and application histories can enhance CJM in on-
line recruitment platforms. The authors propose a specific deep learning architecture based
on GRU encoders that uses a profiling memory module to model the preferences of both job
seekers and recruiters. Using real-world data from an online platform, the authors demonstrate
significant improvements in matching accuracy. While the latter works leverage recruiters’ in-
formation and large annotated HR data, Martinez-Gil [2020] proposed a method that learns
from past solved cases to predict how human experts would rank candidates for new job open-
ings. Their approach computes transformation costs betweenprofiles and joboffers usingback-
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ground knowledge from recruitment taxonomies. It considers factors like replacement costs,
insertion/deletion costs for skills, and weighting of different profile elements. Themethodwas
tested on real recruitment data from IT, legal, logistics, and marketing domains, outperform-
ing a baseline information retrieval approach in most cases. On the other hand, XiaoweiWang
[2021] defined an approach calledKG-DPJF (KnowledgeGraph-basedDeep-learning-inspired
Person-Job Fitting model). Their model uses sentence vectors and subject-term graphs to rep-
resent job postings and candidate profiles; it incorporates a BERT-based encoder (Bidirectional
Encoder Representations fromTransformers) to generate sentence-level embeddings, a knowl-
edge graph to capture domain knowledge and a multi-layer attention mechanism to model in-
teractions between resume features and job requirements. The authors evaluate KG-DPJF on
real recruitment data across multiple domains showing that incorporating knowledge graph
and BERT embeddings improves performance over baselines. Pessach [2020] introduces the
comprehensive analytics framework for HR recruiters to improve hiring and placement deci-
sions. Their framework consists of two phases: a local prediction scheme for individual job
placements and a global recruitment optimization model for organizational needs. The local
prediction phase uses a Variable-Order Bayesian Network (VOBN) model applied to a large
recruitment dataset based on numerical scores of the employees. The analysis reveals that the
VOBNmodel can offer valuable and sometimes counter-intuitive insights. Y.Wang [2021] also
utilized BERT to encode textual information in resumes and vacancy requirements, combin-
ing itwith an attention interaction layer. Vanetik, 2023 extract neural sentence representations,
keywords, and named entities using BERT from resumes and vacancies. The final ranking is
based on the distance metric between their vector representation. The dataset that the author
uses only consists of resumes of software developers.

Tian [2023] tackles the problem of resume classification. The authors proposed the use of
Latent Semantic Analysis (LSA), BERT, and Support VectorMachine (SVM). LSA and BERT
extract features from the resume text, and then SVM is used to classify resumes. However, the
authors do not perform resume matching with the given vacancies. Similarly, Roy [2020] also
proposed usingML tomatch candidates with job postings: the features are extracted from the
CV, and JD using TF-IDF, and thenmatching between the two is done using cosine similarity,
recommending candidates similar to the JD based on their words.Jain [2021] introduce CV
and JD matching using topic modeling approaches such as LSA and Latent Dirichlet Alloca-
tion (LDA). They follow a two-step approach. First, they use TextRank to summarize the CVs
by extracting the most relevant sentences, reducing the volume of information, and then em-
ploying LSA and LDA to match work experience and skills in the CVs with job descriptions.
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Both methods involve creating document vectors and using cosine similarity to find the best
matches. The author concludes that LSA outperforms LDA in terms of precision. Pudasaini
[2022] also proposed the use of the word2vec algorithm using the CBOW (Continuous bag-
of-words) model to create the embedding vectors and the cosine similarity for measuring the
similarity score between CV and vacancy details. Schlippe [2023] introduced Skill Scanner, a
framework formatchingCVswith JP.The authors extracted skills fromdocuments usingBeau-
tifulSoup, where 21.5k bullet pointswere extracted from2,633 online job advertisements. The
skills are then vectorized using Sentence-BERT. Then, the author uses K-means to group the
768-dimensional vectors using cosine distance as the metric. Clusters and their representative
vectors were used to compare job market skills with CVs.

An ontological approach is the one chosen byKavas [2023] to align the CVs and job descrip-
tions based on European Skills, Competences, Qualifications and Occupations (ESCO) tax-
onomy, thus leveraging additional standardized information. They introduce ESCOXML-R,
a model that facilitates the learning of the implicit relations between job titles, skills, descrip-
tions, and keywords that define job experiences. On the other hand,Phan [2021] proposed the
use of CSO (Computer Science Ontology) to classify documents based on their content auto-
matically. It comprises two main components: the syntactic module, which maps n-grams to
concepts using Levenshtein distance, and the semantic module, which identifies semantically
related topics using Word2Vec embeddings. This classifier is applied to CVs and JDs within
the IT domain. The proposed recruitment system integrates automated CV parsing, skill ex-
traction, and matching modules to rank CVs based on criteria like education and skills. The
system processes data from various sources and generates skill graphs for CJM.

3.1.4 Supplementary Relevant Research

Additional noteworthyworks in this domain are those donebyLanger [2018, 2021], who inves-
tigate applicant reactions to AI-based selectionmethods. Their studies revealed that applicants
generally have negative reactions to being evaluated by automated systems, perceiving them as
less fair and trustworthy than human evaluators. Interestingly, the absence of any information
about their AI evaluation did not appear to cause significant issues, raising the question of
which types of information would be most advantageous for applicant reactions. The authors
also examined how applicants behave differently when they believe they are being evaluated
by AI rather than humans, finding that applicants gave shorter answers and reported using
less impression management when they thought AI was evaluating them. Considering appli-
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cant perceptions when implementing AI in selection processes is crucial, although it is often
neglected.
The cornerstone research by Raghavan [2020] showcased a review of AI-based hiring tools

offered by various vendors. They found that while many providers claim to address bias is-
sues, there is often a lack of transparency about the methods used. Biases, accountability, and
transparency are great problemswhen applyingML in this domain. Datasetsmaybe skewed, al-
gorithmsmay be optimized for a bias criterion, and additionally, data canmirror human biases.
Removing identifying information from applicant data might mitigate this issue to a certain
degree, as they still potentially correlatewith sensitive applicant information [Fabris, 2023]. So-
lutions to this issue are far from trivial and may require a lot of human work (e.g., humans as
data curators, humans monitoring systems for potential biases, humans updating systems).

The meta-scientific paper by König [2020] highlighted the challenges of integrating com-
puter science approaches with traditional personnel selection research. They noted three dif-
ferences between the two academic fields. Initially, computer scientists are often primarily fo-
cused on proof-of-concept studies. Consequently, their interest lies more in the potential to
link specific input data to an outcome rather than in ensuring that the data were gathered un-
der realistic, real-world scenarios. Secondly, the core objective of ML is prediction; therefore,
ML-focused studies in computer science that examine issues in personnel selection are likely
to emphasize how accurately an outcome can be predicted and which algorithm achieves the
highest predictive accuracy. Yet, they are less likely to delve into the theoretical justification
for including various predictors in a prediction model. Lastly, for computer scientists, per-
sonnel selection may be just one among many “use cases”, so they might not place significant
importance on the standards upheld by researchers in the personnel selection field, such as the
psychometric properties of scales. Similarly, Oswald [2020] discussed the potential of big data
and AI in industrial-organizational psychology and HRM, emphasizing the need for interdis-
ciplinary collaboration and the importance of addressing ethical concerns in the development
and implementation of AI-based selection tools.

These studies collectively demonstrate the growing interest in and potential of AI and ML
in personnel selection. They highlight both the opportunities (such as increased efficiency and
potentially reduced bias) and the challenges (including applicant reactions, ethical concerns,
and the need for real-case validation) associated with these technologies. This study, while a
proof-of-concept, distinguishes itself through its foundation on extensive collaboration with
HR recruiters and the incorporation of data obtained from practical, real-world recruitment
processes. Furthermore, this research utilizes psychometric instruments (the A+ Question-
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naire) and is designed to assist recruiters by providing a graph structure that enhances the inter-
pretability of the process data.

3.1.5 Open ResearchDirections

As the field of AI in personnel selection continues to evolve rapidly, several key areas emerge as
critical for future research. One of the most pressing needs is for more studies demonstrating
the real-world predictive validity of AI-based approaches in hiring contexts, which is also the
scope of this investigation. While numerous proof-of-concept studies have shown promising
results, there is a significant gap between laboratory findings and practical applications. As
AI is rising more ad more to prominence in today’s society, researchers should focus on con-
ducting longitudinal studies that track the performance and tenure of employees selected using
AI methods—only such research would provide crucial evidence for the effectiveness of these
technologies and help build confidence in their use among HR professionals, candidates and
managers.

Another critical area for future research lies in exploringoptimalways to integrateAI systems
with human decision-making in resourcing. As König [2020] emphasize, fully automated se-
lection is not legally defensible, not desirable inmost contexts, as well as forbidden in the EUby
the AI Act. Therefore, understanding how to create effective human-AI collaborative systems
is paramount and needed in the upcoming years. With this research, Amajor is trying to build
one such system.

Notably, addressing fairness and bias in AI-based recruiting models remains a critical chal-
lenge. While not being the focus of this work, future research should concentrate on devel-
oping and testing advanced methods for bias detection and mitigation. This work is essential
not only for ethical reasons but also for legal compliance and to ensure that AI systems do not
perpetuate or exacerbate existing inequalities in the hiring process. Researchers should explore
techniques such as adversarial debiasing, fairness-aware machine learning, and the use of syn-
thetic data to create more representative training datasets.

Enhancing the explainability and transparency of AI models used in personnel selection is
another crucial area for future work. As the complexity of these models increases, so does the
difficulty in understanding and interpreting their decisions. Research into explainable AI tech-
niques specifically tailored forHRapplications could help address this challenge. This research
should aim to develop methods that can provide clear, understandable explanations for AI-
driven selection decisions, which is also legally required. We explored this research direction
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for graph-based data in Chapter 6, yet more work needs to be done for HR data.
There is also a need to shift focus from mere automation to improving decision quality

through aptitude-diagnostic approaches. Future research should explore how AI can not only
replicate human decision-making but potentially surpass it by identifying novel predictors of
job performance and success. This could involve leveraging big data analytics to uncover non-
obvious relationships between candidate characteristics and job outcomes, or developingmore
sophisticated models of person-job fit that go beyond traditional criteria. Moreover, explor-
ing AI applications for understudied person-environment fit dimensions, particularly Person-
Vocation (PV) and Person-Person (PP) fit, represents another promising avenue for future re-
search. Most currentAI approaches in selection focus on PJ fit, but amore holistic understand-
ing of how individuals fit within an organization requires consideration of these additional
dimensions. Researchers could investigate how AI might be used to assess cultural fit, team
dynamics, or long-term career compatibility. Ideally, such perspective would harness the full
potential of AI, enabling candidates to find their ideal job and thrive in their profession.
The development of larger, high-quality datasets for AI research in personnel selection is

ultimately necessary. The lack of publicly available HR dataset hinders research in this do-
main: many current studies rely on private, limited or potentially biased datasets, which can
affect the generalizability and reliability of their findings. AlthoughHRdata is sensible and pri-
vate in its nature, future work should focus on creating comprehensive, diverse, and ethically
sourced datasets that reflect the complexity of real-world hiring scenarios. Potential method-
ologies may utilize anonymization techniques or adopt synthetic approaches. These datasets
should be made available to the research community to facilitate more robust and comparable
studies.

Comprehensive comparisons of differentMLalgorithms for specific resourcing tasks are also
currently missing. While some studies have compared the performance of various algorithms,
more systematic evaluations across a wide range of selection contexts and criteria would be
valuable. Again, due to the sensitivity of HR data and commercial interests, many models are
closed-sourced and thus with limited reproducibility.

Lastly, as AI technologies continue to advance, research into novel data sources and assess-
ment methods for personnel selection is becoming increasingly of interest. This could include
exploring the potential of virtual reality for job simulations, using wearable devices to assess
stress and performance under pressure, or leveraging social media and digital footprints for per-
sonality assessment. However, such research must carefully consider the ethical implications
and potential privacy concerns associated with these new data sources.
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In conclusion, thepossible future researchdirections inAI for personnel selection are diverse
and challenging, reflecting the complexity and importance of this field. As we move forward,
interdisciplinary collaboration between computer scientists, industrial-organizational psychol-
ogists, and HR professionals will be crucial in navigating the technical, ethical, and practical
challenges of implementing AI in resourcing. This study wishes to be a step towards a future
where AI serves as a powerful tool for creating more equitable, efficient, and effective hiring
practices.

3.2 Graphs, Convolutions, Pooling, and XAI

In Section 2.4, we introducedGNNs as a powerful tool for analyzing and learning from graph-
structured data, whose applications span across various domains [J. Zhou, 2020]. Nevertheless,
the utilizationof these approacheswithin theHRsector remains relatively unexplored, and this
study positions itself as one of the pioneering efforts in this specific field of research.

Aswe explore the potential ofGNNs for candidate-job vacancymatching, two fundamental
operations come to the forefront: graph convolution and pooling. These operations form the
backbone ofmanyGNNarchitectures and play a crucial role in extractingmeaningful features
from graph-structured HR data. Finally, we already discussed how explaining AI predictions
is vital in this domain of sensitive data. Therefore, we also present the recent advancement of
explainable AI (XAI), with a particular focus on GNNs.

3.2.1 Graph Convolution

GraphConvolution (GC) is the cornerstoneofGNNs, allowing themto aggregate information
fromneighboringnodes and capture the local structure of the graph. In the context ofHRdata,
this operationwill enable us tomodel complex relationships between candidates, job vacancies,
and their attributes. For instance, a candidate’s skills can be seen as nodes connected to both the
candidate and relevant job postings, forming a rich, interconnected network of information.
Several approaches to designing GCs have been proposed in the literature. In the following,
three influentialmethods are presented: GraphConvolutionalNetworks, Graph Isomorphism
Networks, Graph Attention Networks, and GraphConv. In Chapter 5 we will describe our
contribution in this field.
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Graph Convolutional Networks

The Graph Convolutional Network, introduced by Kipf [2017], is one of the most widely
adopted GNN architectures. The GCN layer can be expressed as:

H(ℓ+1) = σ
(
D̃−1/2ÃD̃−1/2H(ℓ)W(ℓ)

)
(3.1)

whereH(ℓ) ∈ RN×D(ℓ) is the matrix of node features at layer ℓ, Ã = A+ IN is the adjacency
matrixwith added self-loops, D̃ is the degreematrix of Ã,W(ℓ) ∈ RD(ℓ)×D(ℓ+1) is the learnable
weight matrix and σ(·) is a non-linear activation function. In the context of HR data, this
convolution operation allows each candidate or job vacancy node to aggregate information
from its immediate neighbors, effectively capturing local patterns in the graph structure.

Graph IsomorphismNetwork

TheGraph IsomorphismNetwork (GIM), proposed by Xu [2019], aims to achievemaximum
discriminative power among GNNs with a theoretically-grounded formulation. The GIN
layer is defined as:

h(ℓ+1)
v = MLP(ℓ)

(1 + ϵ(ℓ))h(ℓ)
v +

∑
u∈N (v)

h(ℓ)
u

 (3.2)

where ϵ(ℓ) is a learnable parameter andMLP(ℓ) is a multi-layer perception.

Graph AttentionNetwork

TheGraphAttentionNetwork (GAT) [Velickovic, 2018], incorporates attentionmechanisms
into the graph convolution process. This allows the model to assign different importance to
different neighbors when aggregating information. The GAT layer is defined as:

h(ℓ+1)
v = σ

 ∑
u∈N (v)∪{v}

α(ℓ)
vuW

(ℓ)h(ℓ)
u

 (3.3)
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whereW(ℓ) is a learnable weight matrix and α(ℓ)
vu is the attention coefficient between nodes v

and u at layer ℓ. These are computed using a softmax function over the neighborhood:

α(ℓ)
vu =

exp
(
f(W(ℓ)h

(ℓ)
v ,W(ℓ)h

(ℓ)
u )
)

∑
k∈N (v)∪{v} exp

(
f(W(ℓ)h

(ℓ)
v ,W(ℓ)h

(ℓ)
k )
) (3.4)

where f(·, ·) is a learnable attention function, typically implemented as a single-layer feed-
forward neural network.

GraphConv

GraphConv, introduced byMorris [2019], is a more general graph convolution operation that
combines both local and global graph properties. The GraphConv layer is defined as:

H(ℓ+1) = σ
(
D−1AH(ℓ)W

(ℓ)
1 +H(ℓ)W

(ℓ)
2

)
(3.5)

where D is the degree matrix of A, W(ℓ)
1 and W

(ℓ)
2 are learnable weight matrices. This for-

mulation allows GraphConv to capture both the local neighborhood information (through
D−1AH(ℓ)W

(ℓ)
1 ) and the node’s own features (throughH(ℓ)W

(ℓ)
2 ).

3.2.2 Graph Pooling

While graph convolution excels at extracting local features, graph pooling operations are es-
sential for capturing hierarchical structures and reducing the graph’s size for more efficient
processing [Hamilton, 2017; Xu, 2019; Bianchi, 2023; Grattarola, 2024].

For graph-level tasks, it is necessary to aggregate information from all nodes in the graph.
This aggregation process, often referred to as readout, must be at least permutation invariant
or equivariant to be independent of the ordering of the nodes.

Permutation Invariance and Equivariance

Permutation invariance ensures that the output of the pooling operation remains unchanged
regardless of theorder inwhichnodes are processed. This property is crucial in graph-level tasks,
as usually there is no inherent ordering of nodes in a graph. Formally, for a pooling function⊕

({·}) and any permutation π, permutation invariance is defined as:
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⊕
({h1,h2, . . . ,hn}) =

⊕
({hπ(1),hπ(2), . . . ,hπ(n)}) (3.6)

Permutation equivariance, on the other hand, ensures that permuting the input results in an
equivalent permutation of the output. This property is important for maintaining the struc-
tural information of the graph, and it is defined as:

⊕
({hπ(1),hπ(2), . . . ,hπ(n)}) = π(

⊕
({h1,h2, . . . ,hn})) (3.7)

Standard Aggregation Functions

Several simple—yet effective—permutation-invariant aggregation functions have been widely
used in the GNN community [Xu, 2019; You, 2020]:

• Sum Aggregation: fsum({h1, . . . ,hn}) =
∑n

i=1 hi

• Mean Aggregation: fmean({h1, . . . ,hn}) = 1
n

∑n
i=1 hi

• Max Aggregation: fmax({h1, . . . ,hn}) = max
i=1,...,n

hi

Eachof these aggregation functionshas its own strengths. Sumaggregation enables the learning
of structural graph properties [Xu, 2019], making it useful for capturing overall patterns in
the graph. Mean aggregation captures the distribution of elements, while Max aggregation
is advantageous for identifying representative elements [Hamilton, 2017]. In practice, these
aggregations are often used jointly [Corso, 2020].

Advanced Pooling Approaches

Recent research has explored more sophisticated pooling methods to enhance the expressive
power of GNNs, enabling the network to learn increasingly abstract and coarser representa-
tions of the input graphs. For an overview of advanced poolingmethods, we refer toGrattarola
[2024], which proposes a formal characterization based on threemain operations: selection, re-
duction, and connection (SRC). Such a framework unifies various pooling methods under a
common structure, and they are characterized based on their trainability, density, adaptability,
and hierarchy. The authors provide a systematic way to compare and analyze different pooling
approaches.

Likewise, Bianchi [2023] focuses on the expressive power of pooling. They derive sufficient
conditions for a pooling operator to fully preserve the expressive power of the message-passing

38



layers preceding it, yielding a theoretically grounded criterion for evaluating anddesigningpool-
ing operators. The authors analyze several existing pooling methods based on these expressive-
ness conditions, identifying which operators maintain or potentially compromise the GNN’s
original expressive power.
The choice of pooling operators is not trivial and can significantly affect the performance

and capabilities of a GNN. They depend on the specific task, dataset characteristics, and com-
putational constraints. Aswe progress in presenting our research, wewill explore howdifferent
pooling strategies perform on common benchmark datasets and our specific HR graph struc-
tures. In Chapter 4, we present a topological-based pooling based on probability theory.

3.2.3 Explaining Graph Predictions

As already noted in the previous sections, the influence of ML models in critical decision-
making processes across various domains, has brought the need for model interpretability to
the forefront of AI research [Doshi-Velez, 2017]. Therefore, the past decade has witnessed a
proliferation of methods aimed at explaining GNN predictions as well [Amara, 2022]. These
approaches span a wide range of techniques, each with its own strengths and limitations.

Perturbation-basedmethods assess the relevance of graph components by observing changes
inmodel outputwhen elements aremodifiedor removed [Ying, 2019; Luo, 2020; Schlichtkrull,
2021; Yuan, 2021]. These often employ masking techniques for nodes or edges to simulate
the absence of certain information. Gradient-based methods, on the other hand, leverage the
model’s gradients to attribute importance to input features or graph structures [Pope, 2019;
Sánchez-Lengeling, 2020; Schnake, 2022].
Surrogate model approaches aim to approximate the complex GNN with simpler, inter-

pretable models [Vu, 2020; Y. Zhang, 2021; Q. Huang, 2023; Xiong, 2023]. These methods
trade some fidelity for increased interpretability, offering a balance between accuracy and ex-
plainability.

Game theoretical approaches, particularly those based on the Shapley Value (SV) [Shapley,
1953], have found wide application in XAI. In the context of GNNs, the SV has been used
to assess the quality of subgraph explanations, approximate feature importance, and explain
pre-defined graph motifs [Duval, 2021; Yuan, 2021; Perotti, 2022; S. Zhang, 2022; Ye, 2023;
Akkas, 2024]. Extensions andvariants of the SV, such as theMyersonvalue [Myerson, 1977] for
graph-restricted games, and Shapley-Taylor indices for higher-order interactions [Sundararajan,
2020a], have also been explored in the GNN context, offering more nuanced interpretations
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of model behavior.
Despite these advancements, several challenges remain in applying XAI methods to GNNs.

Scalability is a significant concern, particularly for game-theoretical approaches when dealing
with large graphs. The computational complexity of thesemethods canmake them impractical
for real-time applications, as in HR systems. Moreover, translating graph-based explanations
into meaningful insights for HR professionals requires further research to bridge the gap be-
tween technical explanations and domain-specific interpretations. The ability to explain AI-
driven decisions is not just a matter of transparency but often a legal requirement. Enhancing
the explainability of AI models used in HR applications is crucial for providing clear, under-
standable explanations of selection decisions that can support recruiters, while addressing po-
tential biases, ensuring fairness in the selection process, and building trust. Although our work
in Chapter 6 proposes a novel game-theoretical approach for graph-based explanations, the
field of XAI in HR contexts requires further development to meet all these specific needs.
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Part II

Theoretical Contributions
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4
Topological-based Aggregation for GNN

GraphNeuralNetworks offer apowerfulmeans for learning the representations of graphnodes,
which is particularly useful in graph analysis tasks like predicting node properties. Addition-
ally, representations at the node level can be combined to form a comprehensive graph-level
representation and predictor. This chapter investigates a novel method for defining the ag-
gregation function, diverging from traditional approaches1. We introduce a graph aggregator
leveraging Generative Topographic Mapping (GTM) to convert a collection of node-level rep-
resentations into a single graph-level representation. The incorporation of GTM into a GNN
architecture facilitates the estimation of probability densities for node representations, map-
ping them into a lower-dimensional space while preserving their inherent similarity and topo-
logical structure. This integration is supported by an innovative training procedure explicitly
designed to learn from these dimensionally reduced representations, rather than the full initial
data. Experimental evaluations across various graph classification datasets demonstrate that
this methodology attains competitive predictive performance compared to conventional aggre-
gation architectures, all while supported by a robust theoretical basis.

1This chapter is based on Frazzetto, Paolo, Luca Pasa, Nicolò Navarin, and Alessandro Sperduti [2023a].
“Topology preserving maps as aggregations for Graph Convolutional Neural Networks”. In: Proceedings of the
38th ACM/SIGAPP Symposium on Applied Computing, SAC 2023, Tallinn, Estonia, March 27-31, 2023. ACM,
pp. 536–543. doi: 10.1145/3555776.3577751
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4.1 Motivation

Section 2.4 presents how a graph convolution layer receives in input a representation for each
node in a graph, and it computes a new representation for each node that also considers the
neighboring nodes. The core property of graph convolutions is that isomorphic graphs (i.e.,
graphs representing the same relationship among nodes) should produce the same node repre-
sentations. To date, no polynomial-time algorithms can decide if two graphs are isomorphic.
Thus, this property has to be verified by design. In the setting where the graph representation
is exploited to represent samples (abstracted as nodes) that are not i.i.d., i.e., that are in relation
onewith each other (abstracted as edges), graph convolution is a powerful tool to generate node
representations and node-level predictions. However, in the alternative, but not less common,
setting in which each training example is represented as a distinct graph and the prediction has
to be performed at the graph level (e.g., predicting properties of chemical compounds, each one
represented as a different graph), another non-trivial representation issue arises: it is necessary
to define an aggregation, or pooling operator associating a single representation for the whole
graph (Eq. (2.3)).

The definition of the aggregation function is not trivial for three main reasons: first, it has
to map a variable number of node representations into a single (preferably fixed-size) graph-
level one; second, it should be independent of the node ordering, that is it should be a graph
invariant (isomorphic graphs should produce the same representation), and third, we would
like the representations of similar graphs (e.g., a graph G(1) that is a subgraph of another graph
G(2)) to be similar.

The simplest approach that is commonly adopted in literature is to consider commutative
global aggregation functions such as the element-wise sum, mean, or maximum. However, it
has been shown in [Navarin, 2019] that using such simple aggregations inevitably results in
a loss of information, possibly impacting the predictive performance of the GNN architec-
ture. More complex, non-linear aggregations have thus been proposed in the literature (Sec-
tion 3.2.2).

Another approach consists in treating the node representations as elements belonging to an
unordered set [Vinyals, 2016] and producing an order-invariant representation from them. In
this setting, Deep Sets [Zaheer, 2017] is a general framework to define a universal approximator
of functions over sets that has been adopted as graph aggregation [Navarin, 2019]. It has been
proved that under some hypothesis, any function f(X) over a setX = {x1, . . . , xM}, xm ∈
X can be decomposed as f(X) = ρ

(∑
x∈X ϕ(x)

)
for suitable transformations ρ(·) and ϕ(·).
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The SOM-based aggregator [Pasa, 2020] implements theϕ(·) function of Deep Sets exploit-
ing a self-organizing map (SOM) [Kohonen, 1982] to map the node representations in the
space defined by the activations of the SOM neurons. The resulting representation embeds
information about the similarity between the various inputs. In fact, similar input structures
will be mapped in similar output representations (i.e., node embeddings). The SOM is then
followed by a Graph Convolution layer to partially incorporate the task supervision in the ϕ(·)
function. However, SOMs suffer from some relevant drawbacks, such as lacking an associated
cost function and general proof of convergence. Because of that, it is also difficult to control the
outcome of the learning process, which is driven by many heuristics requiring a careful setting
of the hyperparameters, such as the shape of the function governing the width of the neighbor-
hood used during training. While in general this may not be a practical issue, we show that in
some cases the SOM-based aggregation scheme exhibits performances that are below state of
the art.

In this chapter, we address these issues by developing an alternative aggregation function
ϕ(·) that is based on a principled probabilistic model, namely the Generative Topographic
Mapping (GTM) [Bishop, 1998b]. Specifically, by adopting this approach, we are able to have
better control of the hyperparameters defining the projection of the node representations on
the 2-dimensional GTM probabilistic latent space. This should make the training procedure
more effective, leading to better identification of the node representations manifold and conse-
quently to more expressive graph-level hidden representations. In fact, contrarily to the SOM
where only one winning neuron gets activated for the wholemap for each input node (yielding
to a global smoothing), the GTM grid of normal distributions enables a coarser transforma-
tion that preserves local structures of the representation. These transformed representations
are then exploited with a dedicated training procedure, on which various pooling techniques
can be applied [Bianchi, 2023; Grattarola, 2024]. An additional feature of the proposed aggre-
gation function is the amenability to a direct inspection of the internal representations of the
model that are used to produce the output: theGTM latent space is organized in a 2-dimensional
grid that canbe easily plotted andwhose corresponding values have aprecise probabilisticmean-
ing. Moreover, themodel uses the internal representations directly to produce the output, and
they are not obtained a posteriori like other dimensionality reduction method that inevitably
produces artifacts.
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4.2 Generative TopographicMapping

In more detail, the GTM algorithm [Bishop, 1998a,b] is a form of non-linear latent variable
model which is based on a constrained mixture of Gaussians, whose parameters can be opti-
mized using Expectation-Maximization (EM) [Dempster, 1977]. Formally, given a datasetX
ofN data points xi ∈ RD, the goal of a latent variable model is to find a representation for the
distribution p(x) of data in aD-dimensional spacewith respect to latent variablesu embedded
in a L-dimensional latent space, where L ≪ D. A schematic illustration of a GTM’s work-
ings is provided in Fig. 4.1. The GTM is built by first introducing a regular grid ofK nodes
ui in the latent space, labeled by the index i = 1, 2, . . . , K , and a set ofM fixed non-linear
radial basis functions (RBFs): ϕ(u) = {ϕj(u)}, with j = 1, 2, . . . ,M . Using the RBFs, it is
possible to define a generalized linear regression model from the latent space to the data space
[Park, 1991], such that each point u in latent space is mapped to a corresponding point y in
theD-dimensional data space

y(u,W) = Wϕ(u), (4.1)

whereW is aD×M matrix of learnable weight parameters.

In this fashion, eachnodeui is projected to aD-dimensional reference vectormi = Wϕ(u),
and if we set a prior distribution on the latent space nodes p(u) this mapping will also induce
a corresponding distribution in the data space p(y|W) confined in aL-dimensional manifold.
Since in reality the datasetX will only approximately lay on a lower-dimensional manifold, it
is appropriate to include a noise model for the x vectors. Therefore, we assume that x, for a
givenu andW, is distributed as a radially-symmetricGaussian centredony(u,W) andhaving
variance β−1:

p(x|u,W, β) =

(
β

2π

)D/2

exp
{
− β

2
∥y(u,W)− x∥2

}
. (4.2)

By marginalizing over p(u)

p(x|W, β) =

∫
p(x|u,W, β)p(u)du

and by choosing the prior distribution p(u) to be a superposition of delta functions located at
theK nodes of the regular grid in latent space (which is equivalent to the prior probabilities
of each of the components are assumed to be constant and equal to 1/K), the distribution

46



in the data space can be expressed as p(x|W, β) = 1
K

∑K
i=1 p(x|ui,W, β). The posterior

probabilities of the latent variables (or responsibilitiesRi) given an inputx can be computed by
applying Bayes’ theorem:

Ri(x;W, β) = p(ui|x,W, β) =
exp
{
−β

2
∥mi − x∥2

}∑K
j=1 exp

{
−β

2
∥mj − x∥2

} (4.3)

and the final response asR(x;W, β) =
∑

i p(ui|x,W, β).
Since the GTM represents a parametric probability density model, it can be fitted to the

datasetX by computing the optimal parametersW andβ−1 via likelihoodmaximization. The
log-likelihood function is given by

L(W, β) =
N∑

n=1

ln(p(xn|W, β)) =
N∑

n=1

ln
{

1

K

K∑
i=1

p(xn|ui,W, β)

}
, (4.4)

to which a regularization term can be added to reduce overfitting and improve convergence,
e.g. by choosing a Gaussian prior over the weights governed by a hyperparameter λ ∈ R. Stan-
dard optimization techniques can maximize the resulting loss function. Still, since we are deal-
ing with a latent variable model, a viable approach is to employ the EM algorithm [Dempster,
1977]. Significant performance improvements in training can be achieved by updating the
parameters incrementally using data in smaller batches [Bishop, 1998a], which is particularly
suited for deep-learning applications and thus adopted in the following.

Notice that for the particular noise model given by Eq. (4.2), the distribution p(x|W, β)

indeed corresponds to a constrainedGaussianmixturemodel since the centers of theGaussians,
i.e.,y(ui,W), cannotmove independently but instead are adjusted indirectly through changes
to the weight matrixW. Besides, the projected pointsmi will necessarily have a topographic
ordering in the sense that any two points uA and uB which are close in the latent space are
mapped to pointsmA andmB which are also close in the data space.

4.3 GTM-based Aggregation Function

The Generative Topographic Mapping can be employed to effectively transform data from a
high-dimensional space into a low-dimensional latent space while retaining the intrinsic prop-
erties of the dataset probability distribution p(x). Additionally, the fact that GTM preserves
the topological ordering guarantees that similar node representations are mapped into similar
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Figure 4.1: The GTM first considers a distribution of superposition of delta functions cen-
tered atK nodes of a regular array (left). Each node ui is projected into the data space, where
it becomes the center of a Gaussian distribution. Then, these projections are fitted to the data
manifold X (center), and thanks to Bayes’ Theorem, the posterior distribution in the latent
space is retrieved (right).

distributions in the lower-dimensional space. This method of feature extraction can be inte-
grated into aGNNpipeline since theGTMcan bewell exerted as unsupervised dimensionality
reduction of the graph’s node representations hv before being aggregated.
In this section, we describe an implementation of a GTM-based aggregation function for a

GNN, or briefly GTM-GNN. Firstly we will focus on its architecture and components, and
then we will describe the dedicated training procedure to learn from labeled data.

4.3.1 Architecture

The proposed architecture of the GTM-GNN is made of three main components: a Graph
Convolutional part, the GTM-based aggregator, and aReadoutmodule for the final graph clas-
sification task. A graphical rendering of the architecture is reported in Fig. 4.2.
Let us now illustrate each component of the model in detail. First, an amount d of stacked

graphs convolutional layers learn stable node representations from the input dataset X . For
this implementation, we opted for GraphConv [Defferrard, 2016], due to its wide adoption
and convincing performances, and we chose the LeakyReLU as activation function σ. All the
d convolutional layers are followed by a batch normalization layer. We dubbed to output of the
ith graph convolutional layer as:

hGC(i)
v = σ

(
GraphConv

(
hGC(i−1)
v ,

{
hGC(i−1)
u : u ∈ Nv

}))
(4.5)

for 1 < i ≤ d, while the first layer directly acts on the input data. We refer to the learnable
parameters of this initialGraphConvolutionalmodule asθGC . The enriched node embeddings
h
GC(i)
v for each layer are the one-to-one input of d independent GTMs, that constitute the
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Figure 4.2: Graphical representation of the GTM-based GNN architecture. On the left side,
the input graph goes first to theGraph Convolutionalmodule, which is trained independently
on the Pre-training Readout layer. Then, its representations are used to train the GTMs (bot-
tom right), and their projection is learned by aReadoutmodule. Finally, all the parameters but
the GTMs’ are adjusted in a fine-tuning step.

49



aggregator module. Recall that the representations hGC(i)
v are vectors in a high-dimensional

space, whose size is governed by the number of neurons of eachGraphConv layer. Additionally,
to improve numerical stability, these representations are mapped in [−1, 1] by applying the
hyperbolic tangent, ĥGC(i)

v = tanh
(
h
GC(i)
v

)
. The GTM parameters θGTM(i) = {Wi, βi}

are optimized via the EM algorithm and, once convergence has been reached, the GTMs are
exploited to project the input vectors ĥGC(i)

v into the L-dimensional latent lattice, returning
the posterior distribution ∀v ∈ V :

hGTM(i)
v = GTM (i)

(
ĥGC(i)
v

)
= p(u|ĥGC(i)

v ,Wi, βi). (4.6)

The components of hGTM(i)
v are then normalized to reduce the variability of node representa-

tions in the same graph, ĥGTM(i)
v = h

GTM(i)
v /ξ

GTM(i)
v , where ξGTM(i)

v is the maximum value
among the components of hGTM(i)

v . In the third module, called Readout and defined by the
parameters θReadout, each ĥGTM(i)

v is fed through another GraphConv layer so that the graph
topology is brought back:

h
(i)
readout = σ

(
GraphConv

(
ĥGTM(i)
v ,

{
ĥGTM(i)
u : u ∈ Nv

}))
. (4.7)

Then, these transformed representations are aggregated by taking the concatenation of their
average, sum, and component-wise maximum [Ying, 2018]:

h′(i)
readout =

[
avg
(
h
(i)
readout

)
, sum

(
h
(i)
readout

)
,max

(
h
(i)
readout

)]
. (4.8)

All d feature maps are concatenated to obtain one single graph-level representation hG. Addi-
tionally, in hG we included the aggregation via average, sum, and component-wise maximum
of the features of the input nodesX, so as to fully exploit the information associated with each
node of the graph:

hG =
[
avg(X), sum(X),max(X),h′(1)

readout, . . . ,h
′(d)
readout

]
. (4.9)

Eventually, this graph-level representation is ready for the output layer and the supervised learn-
ing task, achieved by means of anMLP with an output function:

oreadout = LogSoftMax(MLP(hG)). (4.10)
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4.3.2 Training Procedure

To conciliate the unsupervised framework of the GTMs with the supervised task of graph clas-
sification, the training of the GTM-based GNN takes four steps that are carried out one after
the other, optimizing in each turn different sets of learnable parameters.

Pre-training: The first training step consists in optimizing the parameters θGC by adding
an ad-hoc readout layer, whichwe indicate as pre-training readout, to perform supervised learn-
ingwith standardbackpropagation. This pre-training readout layer further aggregates thenode
representations hGC(i)

v by concatenating their average, sum, and component-wise maximum
(as in Eq. (4.8)). Then, it stacks these vectors for all the d layers, applies a linear transformation,
and the LogSoftmax activation function in the end. This permits the training of the graph
convolutional module separately from the rest of the network, which learns stable node repre-
sentationshGC(i)

v that are later fed to the GTMmodule. Finally, the pre-training readout layer
is discarded and thus will not make part of the final model.

GTMTraining: The parametersθGTM of theGTMs are initialized using the first twoprin-
cipal components of the node representations PCA [Bishop, 1998b]. Then, they are optimized
via the EM algorithm with respect to the likelihood of Eq. (4.4).

Readout Training; Next, the parameters θReadout are trained via backpropagation with
reference to the negative log-likelihood loss on oreadout for the c-class graph classification.

Fine-Tuning: Finally, the last training step consists of a fine-tuning phase. The purpose of
this step is to tune the model parameters θGC and θReadout while maintaining the θGTM fixed.
Additional cycles of adaptation could take place by retraining the GTMs while fixing the rest
of the network, and so on; however, we did not investigate this scenario further.

The pseudo-code that summarizes the training procedure is reported in Algorithm 4.1.

4.4 Experimental Results

In this section, themodel setup is presented, and the results obtained by theGNN that exploits
the proposed GTM-based aggregation are discussed.

4.4.1 Setup andHyperparameters

As already mentioned, the GTM-GNN is made of three main parts, i.e the Graph Convolu-
tional section, the GTM-based aggregator, and the Readout module. For what concerns the
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Algorithm 4.1 GTM-based GNNTraining Procedure
Input: Graphs DatasetX with associated labels y
1: θGC ,opre ← Pretraining(X , y) ▷ Pre-training ofGraphConvModule
2: ∀ stacked layer i : hGC(i) ← σ

(
GraphConv

(
h
GC(i−1)
v

))
▷Get stable representations

from pre-training module
3: θGTM(i) ← GTM _training

(
tanh

(
hGC(i)

))
▷ ExpectationMaximization

4: hGTM(i) ← GTM
(
tanh

(
hGC(i)

)
,θGTM

)
▷ Projected representations

5: ∀v : ĥ
GTM(i)
v ← h

GTM(i)
v

ξ
GTM(i)
v

, where ξGTM(i)
v is the maximum of hGTM(i)

v components

6: ∀i : h(i)
readout ← σ

(
GraphConv

(
ĥ
GTM(i)
v

))
▷ReadoutModule

7: ∀i : h′(i)
readout ← aggr

({
h
(i)
readout | v ∈ VG

})
▷Aggregation

8: hG ←
[
avg(X), sum(X),max(X),h′(1)

readout, . . . ,h
′(d)
readout

]
▷Concatenation

9: oreadout ← LogSoftMax (MLP(hG))
10: θreadout ← Backprop(X , y;oreadout) ▷Readout training
11: θGC ,θreadout ← FineTuning

(
X , y;θGC ,θreadout

)
▷ Fine-Tuning training

Output: GTM-based GNN
(
θGC ,θGTM ,θreadout

)

first Graph Convolutional module, we set at d = 3 the number of hidden layers and select
GraphConv as the convolutional operator. In relation to the relative size of these layers, we
opted for a “funnel” architecture [Navarin, 2020] in the sense that the GraphConv layers have
an increasing number of neurons, namely hGC(1) ∈ Rl, hGC(2) ∈ R2l and hGC(3) ∈ R3l,
where the size l is a hyperparameter. This architecture has beenproven to improveperformance,
and therefore it is adopted in the GTM-GNN. Both the Graph Convolutional and the Read-
out module are trained via backpropagation using the AdamW optimizer [Loshchilov, 2019].

The goal of this work is to evaluate the benefit of using the GTM-based aggregation; there-
fore, we focused our attention on the behavior of the GTM parameters. For all GTMs, we set
the latent variable dimension toL = 2, so that theK latent variablesui lay in a bi-dimensional
plane. Both their amount in the width and the height dimensions of the regular grid are hyper-
parameters (in this wayK = height ×width), and the grid itself is built accordingly within a
bounded [−1, 1]× [−1, 1] plane when the GTMs are initialized. Other two relevant hyperpa-
rameters concern the RBFsϕ(u), namely their amountM and variance σ. The former forms
aM ×M regular grid of RBF center points that is overlayed to the latent variables grid in the
[−1, 1]2 plane. On the other hand, the variance σ can be tested for any value or can be com-
puted as the average minimum distance among the aforementioned RBF centers. Finally, as

52



soon as the latent nodes grid and RBF function are set, the matrixΦij = ϕj(ui) is computed,
andwepad a bias columnof1 to it. Notice that this step is done only once at initialization. The
parametersW and β can be either initially set at random from the standard normal distribu-
tionN (µ = 0, σ = 1), or as explained beforehand, they are computed as to mimic the PCA
applied to the whole training set. To do this, before the first epoch of the EM algorithm, the
whole dataset is loaded into memory, and the PCA is performed. Random initialization was
avoided since it can be numerically unstable and it takes longer for convergence. This step is
also needed to determine the right size of the responsibilitymatrixRin that is updated from the
first epoch with incremental learning. The last hyperparameter is the regularization constant
λ, which can take any fixed value or be equal to β−1.

After the EM optimization, the posterior distribution of the input data is estimated. It is
scaled by its maximum value ξGTM(i)

v before being fed to the next GraphConv layer, so that
the values are bounded in [0, 1], restricting the learning of their relative scale on the lattice grid
rather than absolute magnitude (being not-normalized probabilities). Eventually, theReadout
module concatenates the three GraphConv outputs of the same fixed size l and supplies them
to anMLP, whose depth q is also a hyperparameter.
The GTM-based GNN has been implemented with Python 3.8.8 and PyTorch 1.8.1

[Paszke, 2019]. We exploited two types of machines, respectively equipped with: 2 x Intel(R)
Xeon(R)CPUE5-2630Lv3, 192GBofRAM, anNvidiaTeslaV100, and2 x Intel(R)Xeon(R)
CPU E5-2650 v3, 160 GB of RAM, Nvidia T4. For all the other hyperparameters and imple-
mentation details, please check the publicly available code2.

4.4.2 Datasets

All the consideredmethods were empirically validated on seven commonly adopted graph clas-
sification benchmarks. Namely, we used four datasets modeling bio-informatics problems:
NCI1 [Wale, 2008], PROTEINS, [Borgwardt, 2005], D&D [Dobson, 2003] and ENZYMES
[Borgwardt, 2005]. NCI1 involves chemical compounds represented by theirmolecular graph,
where node labels represent the atom type, and bonds correspond to edges. In NCI1, the
graphs represent anti-cancer screens for cell lung cancer. The remaining datasets, PROTEINS,
D&D and ENZYMES involve graphs that represent proteins. Amino acids are represented
by nodes and edges that connect amino acids that in the protein are less than 6Å apart. All the
prediction tasks are binary classification tasks, except for the ENZYMESdataset, where amulti-

2https://github.com/paolofraz/GTMBasedGraphAggregation
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Hyperparameter Values
Latent variables grid (10× 15), (11× 16), (13× 18),

(15× 20), (20× 25)
Amount of RBFM 8, 12, 18
Variance of RBF σ s, 2s, 1
GTMReg. λ 10, 1, 0, 0.1, 0.01, β−1

MLP depth q 1, 3, 5
Hidden neurons l 20, 30, 50

Table 4.1: Hyperparameter grid for the random search cross-validations. Recall that s is the
average spacing among RBF centers, e.g., σ = 0.167 for the (15× 10) grid.

class classification of chemical compounds (six classes) is represented. We further considered
two large social graph datasets: IMDB-B and IMDB-M. These are composed of graphs derived
from actors/actresses who played in different movies collected on IMDB, together with the
movie genre information. Each graph has a target that represents the movie genre. IMDB-B
models a binary classification task, while IMDB-M contains graphs belonging to three classes.
In contrast to the bio-informatics datasets, the nodes contained in the social datasets do not
have any associated label, and therefore, only the graph topology is regarded. Relevant statis-
tics about the datasets are reported in Table 4.3.

4.4.3 Model Selection

We run a 10-fold cross-validation for each dataset to select the best hyperparameter combina-
tion. Due to the long time requirements of performing an extensive grid search, we decided to
limit the number of values taken into account for each hyperparameter, and we performed a
random search over the grid of their combination.

Table 4.1 gives an overview of the arbitrarily chosen values of the GTM hyperparameters
grid. Each one of the four training phases runs for 500 epochs. Moreover, to reduce overfitting
on the training set, we adopted a validation-based early stopping regularization that chooses
the epoch of the best performing model on the validation set, stopping the training if after 25
epochs no better result is achieved. For what concerns the GTMs, we use the complete-data
log-likelihood to monitor the convergence and early stopping.
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4.4.4 GNNModels Employed as Baselines

We compare the GTM-GNNwith several GNN architectures which achieved state-of-the-art
results on the used datasets. In the following, we describe the models considered for the ex-
perimental comparison. The first model we consider in our experimental comparison is the
PSCN proposed by Niepert [2016]. PSCN follows a straightforward approach to define con-
volutions on graphs, which is conceptually closer to convolutions defined over images. First, it
selects a fixed number of vertices from each graph, exploiting a canonical ordering on graph ver-
tices. Then, for each vertex, it defines a fixed-size neighborhood (of vertices possibly at distance
greater than one), exploiting the same ordering. This approach requires computing a canonical
ordering over the vertices of each input graph, which is a problem as complex as graph isomor-
phism (no polynomial-time algorithm is known).

GraphSage [Hamilton, 2017] does modify the standard definition of graph convolution em-
powering the aggregation over the neighborhoods by using sum, mean or max-pooling oper-
ators, and then performs a linear projection in order to update the node representations. In
addition to that, it exploits a particular neighbor’s sampling scheme.

The convolution proposed in [Hamilton, 2017] has been extended byGIN [Xu, 2019], which
introduces a more expressive aggregation function on multi-sets with the aim to overtake the
limitation introduced by GraphSAGE using sum, mean or max-pooling operators.

DGCNN [Muhan Zhang, 2018] extends the GCN proposed by [Kipf, 2017] introducing a
slightly different propagation scheme for vertices’ representations based on random walks on
the graph, and exploiting SortPooling as aggregation function. An extension of thismodel that
exploits the DeepSet (DGCNN-DeepSet) was proposed by [Navarin, 2019].

DiffPool [Ying, 2018] is a poolingoperator that leverages onhierarchical properties of the graph
structure by learning a clustering module that makes the graph more and more coarse at every
layer. In particular, it learns a new adjacency matrix for each layer where single nodes can be
substituted by clusters (thus the size of the matrix becomes smaller at deeper layers).

The Funnel GCNN (FGCNN) model [Navarin, 2020] relies on the similarity of the adopted
graph convolutional operator to the way the features of the Weisfeiler-Lehman (WL) Subtree
Kernel [Shervashidze, 2011] is computed. Based on this observation, a novel WL-based loss
term for the output of each convolutional layer is introduced to guide the network to recon-
struct the corresponding explicitWL features. FGCNN also adopts a number of filters at each
convolutional layer determined by a measure of the WL-kernel complexity.
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Model/Dataset PTC NCI1 PROTEINS D&D ENZYMES IMDB-B IMDB-M

PSCN [Niepert, 2016] 60.00±4.82 76.34±1.68 75.00±2.51 76.27±2.64 - 71±2.29 45±2.84
FGCNN [Navarin, 2019] 58.82±1.80 81.50±0.39 74.57±0.80 77.47±0.86 - - -
DGCNN [Navarin, 2019] 57.14±2.19 72.97±0.87 73.96±0.41 78.09±0.72 - - -
DGCNN [Errica, 2020] - 76.4±1.7 72.9±3.5 76.6±4.3 38.9±5.7 53.3±5.0 38.6±2.2
GIN [Errica, 2020] - 80.0±1.4 73.3±4.0 75.3±2.9 59.6±4.5 66.8±3.9 42.2±4.6
DIFFPOOL [Errica, 2020] - 76.9±1.9 73.7±3.5 75.0±3.5 59.5±5.6 69.3±6.1 45.1±3.2
GraphSAGE [Errica, 2020] - 76.0±1.8 73.0±4.5 72.9±2.0 58.2±6.0 69.9±4.6 47.2±3.6
DGCNN-DeepSets [Navarin, 2019] 58.16±1.05 74.19±0.59 75.11±0.28 77.86±0.27 - - -
SOM-GCNN [Pasa, 2020] 62.24±1.7 83.30±0.45 75.22±0.61 78.10±0.60 50.01±2.92 67.65±1.99 48.68±3.46

GTM-GNN 62.49±9.60 82.48±1.33 72.88±4.82 78.27±3.63 59.03±5.92 72.33±3.89 47.69±4.44
GTM-GNNw/ Ablation 61.95±8.27 82.28±2.12 73.86±4.74 76.70±3.47 58.72±7.02 71.67±3.56 47.78±3.9

GTM-GNN
Hyperparameters

(15× 20)
q = 1

λ = 0.01
l = 30
M = 12

(15× 20)
q = 5
λ = 0.1
l = 50
M = 12

(11× 16)
q = 1

λ = 0.01
l = 20
M = 12

(12× 17)
q = 3
λ = 0.1
l = 50
M = 12

(15× 20)
q = 3
λ = 0.1
l = 50
M = 12

(11× 10)
q = 1
λ = 0.1
l = 20
M = 12

(15× 20)
q = 1
λ = 0.1
l = 30
M = 12

Table 4.2: Accuracy of GTM-GNN and baselines models on the seven used datasets. Values
for the selected latent variable grid size, depth of the readout MLP q, regularization parameter
λ, amount of hidden neurons l, and number of RBFM are reported.

4.4.5 Discussion

In Table 4.2, we report the results achieved by the GNNs when the comparison among them
is fair, i.e., the same validation strategy and the common settings for the input datasets are em-
ployed. The issue of experimental reproducibility and replicability in the field of GNN is cru-
cial; therefore, we hold as baseline only the fair results that are reported in the literature [Errica,
2020]. The results reported in Table 4.2 were obtained by performing 5 runs of 10-fold cross-
validation. The results reported in [Ying, 2018; T.Chen, 2019; Xu, 2019] are not considered in
our comparison since the model selection strategy is different from the one we adopted, which
makes the results not comparable.

The results reported in Table 4.2 show that the GTM-GNN achieved highly competitive
performance in all considered datasets. In particular, on PTC, D&D, and IMDB-B the pro-
posed method obtained higher results than the state-of-the-art, while in NCI1, PROTEINS,
ENZYMES, and IMDB-M the accuracy results are higher than the ones achieved by most of
the models considered in the comparison. On NCI1 and IMDB-M the GTM-GNN shows
the second-best performance, and only the SOM-GCNN performs better than our proposed
model. On PROTEINS, the accuracy reached by the GTM-GNN is lower than the ones ob-
tained bymany of the other consideredmodels. The hyperparameter values selected in this case
are very different than those selected on the other datasets. Indeed, the selectedmodel is the sim-
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pler considered in our experimental assessment (l = 20, q = 1). Specifically, 20 is the smallest
value for l we considered during the validation process. It is likely that by using smaller values
for l, theGTM-GNNcould reachbetter performances and avoid overfitting. Additionally, this
dataset has a higher average degree (3.73, see Table 4.3) compared with NCI1 (2.16) and PTC
(2.06); we argue that, compared with the other two datasets that have graphs sizes of the same
magnitude, it could be more difficult to grasp the local features that differentiate between the
two classes. Overall, the GTM-CGNN exhibits higher accuracy variances due to varying per-
formances on each CV split. We also argue that being a probabilistic model, randomness plays
a major role in the GTM component. Nevertheless, we recall that this probabilistic framework
is theoretically well-founded, and more research can be done to exploit its characteristics.

Dataset #Graphs #Node #Edge Avg. #Nodes Avg. #Edges Avg. Degree #Classes

PTC 344 4915 10108 14.29 14.69 2.06 2
NCI1 4110 122747 265506 29.87 32.30 2.16 2

PROTEINS 1113 43471 162088 39.06 72.82 3.73 2
D&D 1178 334925 1686092 284.32 715.66 5.03 2

ENZYMES 600 19580 74564 32.63 124.27 3.81 6
IMDB-B 1000 19773 193062 19.773 193.06 9.76 2
IMDB-M 600 19502 197806 13.00 131.87 10.14 3

Table 4.3: Datasets statistics.

4.4.6 Ablation Study

To investigate further the benefits of theGTMaggregation, we analyzed the case of the removal
of the GraphConv layer after the aggregation that was originally inserted to restore the graph
topology. The results of this ablation study are reported in Table 4.2. We can see that albeit the
dismissal of a layer, the predictive performances do not show any significant difference com-
pared to the full GTM-GNN architecture. Therefore, removing the last graph convolutional
layer will be helpful in reducing the complexity of the GTMmodule. Moreover, it reduces the
number of parameters and hyper-parameters that must be optimized.
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4.5 SOM vs. GTM

The similarity between the GTM-GNN and SOM-GCNN makes the comparison between
these two models interesting in evaluating the impact of the proposed GTM-based graph ag-
gregator. From this perspective, it is worth noticing that the drop in accuracy onNCI1, PRO-
TEINS, and IMDB-M is limited, while in ENZYMES the difference between SOM-GCNN
and GTM-GNN models is considerable. Indeed, GTM-GNN improves the SOM-GCNN
performance by almost nine percentage points.

We argue that the higher GTM results may be explained by: (i) its training being more the-
oretically grounded than the one exploited by the SOM—GTM optimization is based on the
maximization of a likelihood function that can be carried out by standard optimization tech-
niques; (ii) being able to represent more complex manifolds, its results are more suitable in
managing multi-class classification tasks because it may be easier for the GTM to encode the
differences in the data distributions of the various classes compared to SOM (see Section 4.5.1);
(iii) the model is easier to set up since it does not require to define a neighborhood function
with its respective hyper-parameters [Pasa, 2020].

4.5.1 Lattice representations

In order to investigate the reason for the GTM performance improvement compared to SOM
on the ENZYMES dataset, in Fig. 4.3, we plot the heatmaps of the respective lattice represen-
tations. The heatmaps were computed following the same procedure proposed in Pasa [2020].
Each heatmap shows the average value of each neuron in the lattice (either SOM or GTM)
computed over the set of graphs belonging to the same class. Thus, each heatmap represents,
for each class, the average level of utilization of the different parts of the lattice, meaning that
parts that are used by a single class represent discriminative areas for that class. The comparison
shows that the GTM tends to create a more distributed pattern of specific areas.

Given the higher accuracy obtained by the GTM, it is clear that the learned node represen-
tations benefit from the greater expressiveness and local discriminative power of the GTM in
comparison with the SOM. The better representations obtained by the GTM are also due to
the lower sensibility of the GTM to the values of the hyperparameters compared with SOM.
Indeed, as reported in Table 4.2, the selected latent space dimensions are similar regardless of
the considered dataset/task complexity. These interesting features, related to the probabilistic
definition of the GTMs, also help in having an effective training phase.
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Figure 4.3: Heatmaps of first-level SOM (top row) and GTM (bottom row) projected repre-
sentations for the multi-class dataset ENZYMES. Heatmaps at higher levels are similar. Each
heatmap is obtained by averaging the contribution of several graphs belonging to the corre-
sponding class.

4.5.2 End-to-end Fine Tuning

Arguably, one of the biggest downsides of having a layer trained in an unsupervised way for a
supervised task, such as the SOM-GCNN, is that it is impossible to train the overall network
using end-to-end backpropagation.

In this section, we show that the proposed GTM-based aggregation can also be trained end-
to-end. While the aforementioned training procedure is reasonable—given the unsupervised
nature of the SOM andGTMmaps—thanks to the specific formulation of the GTM, it is also
possible to train the map using the gradient provided by the subsequent layers. We thus pro-
pose to add a further step in the training procedure, where we fine-tune all the parameters of
the network using standard backpropagation. The only modification we need to introduce for
GTM iswell-knownwhen training probabilisticmodels using stochastic gradient descent—we
have to be careful in re-normalizing the output of the GTM to ensure it remains a probability
distribution. Notice that it is not possible to pursue this approachwith the SOM-based formu-
lation since it relies on an argmax operation that is not differentiable. Therefore, modifying
the SOM formulation to exploit only differentiable operations would require defining a novel
optimization algorithm since the original one is not based on the optimization of a likelihood
function.

We applied this end-to-end fine-tuning on the ENZYMES dataset to see if it could improve
the performances of our proposed model even more. With no additional hyper-parameter ex-
ploration, we started the fine-tuning process from the “optimal” hyper-parameters, obtaining
an accuracy on the ENZYMES dataset of 60.9±6.7, where the results before end-to-end fine-
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tuning as reported in Table 4.2 are 59.03±5.92. Even though such improvement is not statisti-
cally significant, we can see a slight increase in accuracy in all five runs thanks to the class-based
supervision that is provided in this last step to the GTM representations, which are not fully
unsupervised anymore.

This preliminary result suggests that a viable alternative strategy for training theGTM-based
architecture can include the GTM likelihood directly in the loss function and perform a single
end-to-end training phase.

4.6 Final Remarks

In this chapter, we addressed the problem of defining a more effective node aggregation func-
tion for Graph Neural Networks. Specifically, inspired by the work proposed in Pasa [2020],
where the authors introduced a SOM-based graph aggregator, we developed a novel node aggre-
gation function based on a principled probabilistic model, i.e., Generative Topographic Map-
ping, that owns several nice advantages over SOM: (i) training optimizes a well-defined cost
function; (ii) a smaller hyperparameter space to explore formodel selection; (iii) experimentally
showed to return richer dimensionality reductionmappings, thus increasing the expressiveness
of the node aggregation function that can be obtained in practice. In addition to the above ad-
vantages, the proposed approachopens the door tomore interpretableGNNs since the internal
2-dimensional representations used to generate the output can be directly visualized for inspec-
tion in 2-D heatmaps. This comes without compromising the model’s performance, as clearly
shown by the reported state-of-the-art empirical results on seven graph-level classification tasks
by a GNN exploiting the GTM-based aggregation function.

Finally, we showed how adopting the GTM aggregator enables the possibility of training
the whole model in an end-to-end fashion. We exploited this option as a final fine-tuning step,
but this approach will be further investigated by obtaining an aggregation layer that does not
require any specific training procedure.
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5
Multiplicative Integration as Graph

Convolution

WehavedescribedhowGNNsgeneratenode representationsusing convolutionoperators grounded
in a neighborhood aggregation methodology. Typically, a graph convolutional layer is concep-
tualized as additive components thatmerge several streams of information. Nevertheless, when
integrating information in sequences, the gradient flowhas demonstrated enhanced robustness
through the adoption of the Multiplicative Integration (MI) technique. Consequently, it is
valuable to investigate the influence of MI within GNNs1. We propose three distinct convo-
lution layers designed to leverage MI with the aim of enhancing various facets of the neigh-
borhood aggregation scheme. Finally, both theoretical and empirical analyses compare our
proposed layers against the prevalent GNN operators for the graph classification task.

5.1 Motivation

GNNs define a neural architecture that follows the graph topology—from the neurons asso-
ciated with a vertex and its neighbors, a hidden representation corresponds to the same ver-

1This chapter is based on Frazzetto, Paolo, Luca Pasa, Nicolò Navarin, and Alessandro Sperduti [2024a].
“Beyond the Additive Nodes’ Convolutions: a Study onHigh-OrderMultiplicative Integration”. In: Proceedings
of the 39th ACM/SIGAPP Symposium on Applied Computing, SAC 2024, Avila, Spain, April 8-12, 2024. ACM,
pp. 474–481. doi: 10.1145/3605098.3636016
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tex in another network layer. For each hidden layer within the GNN, the node representa-
tions undergo transformations that are defined by the convolution operator (Section 3.2.1).
Graph Convolutions (GC) are generally predicated on a neighborhood aggregation scheme
(⊕ in Eq. (2.1)). This scheme takes into account, for each node, only its immediate neighbors
and the various GCs proposed in literature usually exploit an additive building block.

In the structured domain, particularly in sequential learning, a different procedure of in-
formation integration has been studied: the Multiplicative Integration (MI) [Y. Wu, 2016].
The idea is that, instead of utilizing the sum operation to join the information conveyed by
the various elements that compose the recurrent model equation, MI exploits the Hadamard
product. Without introducing any extra parameters, the authors leverage second-order inter-
actions between features, i.e., relationships or dependencies that exist between pairs of features
within the dataset. Unlike first-order interactions, which involve individual features in isola-
tion, second-order interactions consider how two features jointly influence the output or pre-
diction. One of the first applications ofMI on sequential domains was proposed byGoudreau
[1994] that introduced the Second-Order Single-Layer Recurrent Neural Networks (Second-
order SLRNN).

Themost commonmodel for sequences that adopts theMI is theLSTM[Hochreiter, 1997]
(or variants of it, e.g. GRU [Cho, 2014]). This model employs the MI to implement a gating
mechanism to manage long-term temporal dependencies. An enhanced version of the LSTM
(and earlier, of theRNN) that exploits theMIalso todefine the recurrentmechanism is themul-
tiplicative LSTM/RNN [Sutskever, 2011; Krause, 2017]. These models use the Hadamard
product to combine the projection of the current time step with the hidden states that come
from the previous time step. The idea of usingMI to manage a gating mechanism and to com-
bine the information flow from different temporal domains is also used in many other models,
like in Highway Network [Zilly, 2017]. Another model that exploits a similar technique is the
HyperNetwork [Ha, 2017]. The HyperNetwork dynamically generates the weights of a net-
work using another (smaller) network. In particular, the recurrent version (the HyperLSTM)
generates a multiplicative bias that drives the generation of dynamical weights. A similar ap-
proach that belongs to the Bayesian framework was proposed by Krueger [2017].

Graph convolution operations share some critical mechanisms with the time-based aggrega-
tion mechanism used by Recurrent Neural Networks. Indeed, in literature, theMultiplicative
integration is shown to be particularly convenient to aggregate contextual information that
comes from different sources [Jayakumar, 2020]. Inspired by this similarity, in this paper, we
explore howMI can be applied to define novel GCs.
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Some recently proposed GNN approaches do exploit some form of multiplicative mecha-
nisms, for instance implementing gating mechanisms [Velickovic, 2018; Brockschmidt, 2020;
Pasa, 2021; Tailor, 2022] or hypernetwork-like models [Ha, 2017; Pasa, 2024]. On the other
hand, the recent work of Koishekenov [2023] explores how to combine features best to condi-
tion GNNs on additional information. Their “strong conditioning”, is the Hadamard prod-
uct between the weighted adjacency and feature matrices that replace the layers in anMLP; yet
they do not exploitMI to aggregate the embeddings of the various nodes in theGNN. Further-
more, Hua, 2022 have proposed node pooling based on invariant multiplication, where they
define a GNN layer that can be seen as the composition of a linear layer with a weight matrix, a
multiplicative pooling layer, and another linear map. This layer is used as both the aggregation
and update steps of a GNN, thus it does not explicitly leverage the graph structure, but it re-
lies purely on higher-order feature interactions. However, these related works do not explicitly
adopt the MI paradigm concerning nodes’ neighborhoods.

To the best of our knowledge, this is the first paper that explores the application of MI in-
side aGCoperator. Wepropose three definitions ofMI-basedGCoperators that stem from the
commonly used and very effectiveGraphConv operator [Morris, 2019]. These three operators
are defined with the aim of exploring how the MI can be embedded into a graph convolution
to obtain a second-order GC operator. Such second-order interactions between features can
capture more intricate patterns and relationships in the data, enabling us to go beyond tradi-
tional first-order feature analysis. We empirically evaluate the proposed MI-GNNs on eight
commonly adopted graph classification benchmarks. The experiments show howMI, applied
in the aggregation and/or combination step, allows us to uncover hidden dependencies con-
tributing to improvedmodel performances. We compare the proposedmethods with themost
common additive graph convolutional operators. In particular, we analyze the results regard-
ing the accuracy and computational time required for training. The results highlight how the
use of MI can help obtain improved performance in terms of accuracy and speed of conver-
gence. We apply rigorous statistical hypothesis testing to assess the statistical significance of
the observed improvements. Considering that the application of MI also influences the form
and the flow of the gradient of the GNN, we analyze how gradient propagation differs among
multiplicative and additive GCs.
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5.2 MI-GNN

The core idea ofMI-GNN is to employ theHadamard product to propagate signals in a GNN.
In the following part of this section, we present three different possibilities to extend theGraph-
Conv operator byMultiplicative Integration.

The first proposed version of MI-GNN (namedMI-GNN-v1) exploits MI to integrate the
information from the current nodewith the one from its neighborhood. This is obtained by re-
placing the sumof the additive version of theGraphConvwith theHadamard product between
the current node projection and the aggregation of its neighbors:

h(ℓ)
v = ϕ

((
Wh(ℓ−1)

v + b
)
⊙
∑
u∈Nv

(
WΣh

(ℓ−1)
u + bΣ

))
. (5.1)

The two bias terms b and bΣ are inserted to obtain a more expressive formulation. In fact, by
distributing the product over the sum and rearranging the terms, we get the equivalent equa-
tion
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∑
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h(ℓ−1)
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+Wh(ℓ−1)
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(
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∑
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h(ℓ−1)
u

))
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Note that the first two terms of the above equation constitute a scaled version of the regular
additive interaction between h(ℓ−1)

v and
∑

u h
(ℓ−1)
u . The scaling is dynamic since, in addition

to the constant bias terms, the scaling factor also depends on the cardinality of the neighbor-
hood. Moreover, the weights regulating the multiplicative integration between these two com-
ponents, defined by the third term, are obtained by combining the two weight matrices W
andWΣ of the convolution, with no increase in the number of parameters with respect to the
additiveGraphConv, except for the additional bias.

To further enhance the expressiveness of theMI-GNN, at the cost of increasing the number
of convolution parameters, the additive and multiplicative building blocks can be combined
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explicitly, each with its own weights. We named this variationMI-GNN-v2:

h(ℓ)
v = ϕ
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v + b
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+WΣ

∑
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h(ℓ−1)
u +

+W⊙

(
h(ℓ−1)
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∑
u∈Nv

h(ℓ−1)
u

))
(5.3)

The thirdMIvariationof theGraphConv thatwepropose,MI-GNN-v3, exploits theHadamard
product to define both the combination and aggregation steps of the GC operator:

h(ℓ)
v = ϕ
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Wh(ℓ−1)

v + b
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(
WΠ

[
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h(ℓ−1)
u

]
+ bΠ

))
(5.4)

This formulation makes the interaction among all nodes involved in the convolution uniform,
implementing a global gating mechanism while preserving the sharing scheme of the parame-
ters used in GraphConv. The use of MI as a combination mechanism, however, involves mul-
tiplying several node embeddings (projected using the same shared weights) that can lead to
numerical stability issues in case of extremely small (close to 0) or large (significantly higher
than 1) values. This can make the training phase unstable. To solve this issue, by maintaining
a multiplicative integration approach as an aggregation mechanism, we propose to transform
the product among the neighbors into a sum by exploiting the logarithm function jointly with
theReLU function to ensure that the co-domain ofA(·) is limited to a set of values that ensure
a more stable training phase:

h(ℓ)
v =ReLU

(
Wh(ℓ−1)

v + b
)
⊙

⊙
(
Wlog

[∑
u∈Nv

log
[
ReLU(h(ℓ−1)

u ) + ϵ
]]

+ blog

)
, (5.5)

where ϵ is a small positive constant which prevents the input to log to be 0. Notice that when
ϵ = 1, we get as output only positive values, avoiding negative values with high modules. We
applied the ReLU function also on the current node embedding (Wh

(ℓ−1)
v + b) projection

becausewewant to ensure that thenewembeddingwill be a positive tensor. This is critical since
it will be used as input to a logarithm in the subsequent GC layer (if it exists, i.e., if ℓ < L).
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5.3 Experimental Setup and Results

Our experimental assessment aimed to empirically verify whether multiplication can be used
to define graph convolutions with competitive performance. Specifically, our experimental
results show that representative methods in literature exploiting multiplicative operators, i.e.,
GAT andGNN-FiLM, do not show a performance advantage over addition-based GCNs. We
then explore the use ofMI in graph neural networks, evaluating the proposals presented in Sec-
tion 5.2, along with four widely adopted baselines, on seven graph classification benchmark
datasets (see Section 4.4.2).

5.3.1 GNNArchitecture andModel Selection

We considered as baselines two commonly adopted GC operators, GCN [Kipf, 2017] and
GraphConv [Morris, 2019]. Moreover, we also experimentwith two powerful convolutions for
graphs that exploit the multiplicative operation differently than the MI-GNN: GAT [Velick-
ovic, 2018] andGNN-FiLM[Brockschmidt, 2020]. Formore details, please check the publicly
available code2.
We handled the experiments and validated all the models’ hyper-parameters adopting the

GraphGym [You, 2020] framework. Specifically, we started off from their findings on the
GNN architecture design space by setting a common baseline configuration for all the experi-
ments based on the work of [You, 2020]. We set the PReLU as activation function [He, 2015],
batch normalization [Ioffe, 2015] for each layer, and among layers, we adopted the SKIP-CAT
scheme [G. Huang, 2017]. The training is carried out with the ADAM optimizer [Kingma,
2015], cosine learning rate schedule (starting from 0.01 and annealed to 0, no restarting), 5×
10−4 L2 weight decay for regularization. The batch size is set to 32 for all the datasets and
we let every experiment run for 400 epochs. We used the libraries PyTorch=2.0.0, PyTorch
Geometric=2.3.0, andour experiments havebeen carriedout in a computing cluster equipped
with GPUs Nvidia RTX A5000. Each tested network consists of MLP layers before and after
theGCoperator layers. This particular architectural setting is the one suggested inGraphGym.
The amount of these layers and their hidden units are hyperparameters. In our evaluation, we
consider graph classification tasks; therefore, all the considered models have a global pooling
layer to compute a graph-level representation given the node embeddings. The pooling layer is

2https://github.com/paolofraz/MI-GNN
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defined by concatenating the global mean, max, and sum aggregations (Section 3.2.2):

hG = [meanv∈V (h
(L)
v ),max

v∈V
(h(L)

v ), sumv∈V (h
(L)
v )], (5.6)

where L is the number of GC layers.
Each dataset is split in train/validation/test sets according to a [80%, 10%, 10%] random

split. Every configuration is run 3 times, and we take the average of all the evaluation metrics
(accuracy, time, etc.) takenon the test set at the best epoch in validation. The randomgenerator
seed is set likewise at the beginning of each run, thus ensuring that the dataset splits are equal for
eachmodel andmaking their comparisonmore robust and fair. Weperformed a full grid search
over all thehyper-parameters combinations reported inTable 5.1, resulting in96 configurations
tested for each of the 7 datasets and of the 7 GNN layer types. The layers for GraphConv,
GCNConv, GATConv, and FiLMConv are taken from the PyTorch library.

Hyper-parameters Values
Pre-MLP layers 1, 2
GC layers 2, 4, 6, 8
Post-MLP layers 2, 3
Hidden units 64, 128, 256
Activation ϕ PReLU, Tanh

Table 5.1: Hyper-parameters Grid for the MI-GNNs

5.3.2 Results andDiscussion

Dataset \ GNN GNN-FiLM GAT GCN GraphConv MI-GNN-v1 MI-GNN-v2 MI-GNN-v3

COLLAB 68,9±9,2 55,7±1,4 79,4±1,6 75,9±1,7 76,9±2,7 75,9±0,7 74,5±0,9
DD 77,9±2,1 77,6±2,0 77,6±3,4 77,6±2,4 79,6±2,4 77,3±0,7 77,0±5,3
ENZYMES 58,9±0,8 58,3±3,6 62,2±4,2 62,2±0,8 62,8±0,8 63,3±2,4 60,6±3,9
IMDB-B 53,7±4,8 55,7±2,5 71,7±5,3 73,0±3,3 74,0±2,2 73,7±1,7 74,0±4,9
IMDB-M 41,1±7,5 40,0±2,2 50,5±2,7 50,9±2,5 49,6±3,8 49,8±3,8 51,3±3,3
NCI1 79,0±2,1 80,2±2,0 80,6±1,4 81,7±1,7 81,6±1,0 81,6±2,0 78,3±1,7
PROTEINS 73,8±3,0 74,1±2,6 73,8±2,3 75,0±4,1 75,3±3,4 75,9±2,6 74,4±2,8

Table 5.2: Accuracy and standard deviation, in percentages, on the test set for the best-
validated models on all the datasets. The best performances are highlighted in boldface.
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The results of our experiments are presented in Table 5.2. We can start noticing that the
two existingmultiplication-basedmethods (GNN-FiLM andGAT) do not result in the better-
performingmethods on any of the considered datasets. This observation enforces our intuition
that research is still required inmultiplication-based graph convolutions to achieve competitive
performance. As for the proposed methods, at least one version of the proposed MI-GNNs is
the best-performing method in six of the eight datasets. The GCN performs well only in the
COLLABdataset, which is the dataset that has the highest edges/graph ratio. We argue that the
normalized adjacencymatrix of the GCN ismore robust for such cases, whereas the other mul-
tiplicative or additive operators are penalized by the higher average degree. TheGraphConv has
the highest accuracy only for the NCI1 dataset; however, MI-GNN-v1 and -v2 perform sim-
ilarly. MI-GNN-v1 and MI-GNN-v2 are the best-performing methods on two datasets each.
MI-GNN-v3 performs on par withMI-GNN-v1 on IMDB-B (but with a higher variance) and
is the best-performing method on IMDB-M.

Additionally, we analyzed whether the improved performances of our implementation of
the MI-GNNs also translate into briefer training times. In Fig. 5.1, we display each dataset’s
accuracy and total training time until the best validation epoch is reached. In the plot, we also
report the Pareto frontier—the set of all Pareto-efficient points. In our case, those points re-
fer to the methods for which no improvement in one dimension (either accuracy or training
efficiency) is possible without losing performance on the other dimension. Such points can
be informally interpreted as the best time/accuracy trade-off methods. We can see that the
MI-GNNs are often present in the Pareto-front, meaning that not only do they achieve the
best performances most of the time, but they also require less or comparable time than the
baselines. Notice that on many datasets, some methods are extremely efficient (e.g., GCN on
COLLAB, IMDB-M, and PROTEINS) but perform very poorly. Even though those points
are part of the Pareto-front because of the low training times, they are not interesting solutions
for their degraded predictive performance. Wewant tomention that GCN results are the slow-
est method because, by default, it does not store the normalized adjacency matrix. For this
reason, its training could be tweaked and sped up; however, its predictive performances would
not be altered.

5.3.3 Statistical Significance of the Results

Inspired by the analysis of Demsar [2006], we investigated the performances of our proposed
models beyond a simple but naive maximum-accuracy benchmark. Indeed, when comparing
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Figure 5.1: Distribution of the training times of the best performing models w.r.t their ac-
curacy. The MI-GNNs are marked with a cross, and the other baselines are marked with a
rounded point. The light-blue area (left side) helps to identify the Pareto-front. For ogbg-
molhiv, the AUC is reported on the vertical axis.

multiple classifiers onmultiple datasets, one should apply rigorous statistical hypothesis testing
before assessingwhether the improvement is statistically significant. Additionally, when testing
multiple hypotheses simultaneously, multiplicity issues arise and one should adopt the proper
corrections.
The Friedman test [Pereira, 2015] is a non-parametric test that does not assume the distri-

bution and variances of the samples. For each dataset and for each configuration, it ranks the
accuracies of all the models. Then, it computes a statistic χ2

F under the null hypothesis, which
states that all themodels are equivalent and their ranks should be random. In our case, this test
gives a p-value< 0.01, so the null hypothesis is rejected, and we can proceed with a post-hoc
test to tell which algorithms perform the best. To calculate the statistical significance of the
pairwise comparisons between themodels, we used the Conover post-hoc test for unreplicated
blocked data [Conover, 1999] where the p-values are adjusted with the step-down method us-
ing the Sidak corrections [Šidák, 1967]. Other common p-values adjustments yielded equiv-
alent outcomes. The outcome of this analysis is neatly presented with the critical difference
(CD) diagrams in Fig. 5.2. This plot displays the averages of the normalized ranks of the mod-
els among all the configurations. On the x-axis, 1 would stand for a model that always scores
better; on the contrary, a model at 0 would always be the last one in the rankings. The groups
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that could not be statistically deemed different by the Conover test are linked by a horizon-
tal crossbar. We can see that GraphConv, MI-GNN-v1, and -v2 are significantly better ranked
than all the other models. While the MI-GNN-v1 has the highest average rank of 0.71, indi-
cating that it tends to be the best model more frequently for a given configuration and dataset,
there is insufficient statistical evidence to confirm this conclusion. Therefore, conducting ex-
periments on additional datasets would be necessary to endorse this assessment. Nevertheless,
this shows that MI-GNN-v1 is a valid alternative to GraphConv, and all the parameters and
settings being equal, merely replacing the additive term with the Hadamard product can lead
to improved performances. Moreover, the CD diagram shows us that MI-GNN-v3 is, on av-
erage, in the middle of the rankings despite achieving the best accuracy in PROTEINS and
ENZYMES. This advises us that when evaluating new machine learning models, when it is
possible, it is crucial to go beyond the maximum accuracy rationale—only by testing whether
the newmodel performs statistically better than the baselines for multiple configurations, one
can ensure that such improvements are significant and applicable across different scenarios.

Figure 5.2: Critical Difference diagram of the Average score ranks.

5.3.4 Open Graph Benchmark

To prove the validity of our approach, we additionally evaluated the performances of the MI-
GNNs on the molhiv dataset belonging to the Open Graph Benchmark (OGB) [Hu, 2020].
This dataset is made of 41 127 graphs, an order of magnitude more than the ones previously
considered, and it follows its pre-defined pre-processing and evaluation pipeline. Due to its
complexity and time constraints, we restrictedour experimental setup to a smaller hyper-parameters
grid and fewer models. For these reasons, it cannot be analyzed along with the other datasets
and the procedure described in the previous section. Table 5.3 reports the best AUC on the
test set, training time, and architecture for the model with the highest AUC score on the vali-
dation set. MI-GNN-v2 has the best performance and it requires fewer parameters, thus, this
supports our intuition that MI is able to grasp relevant complex interactions among nodes. It
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is worth noticing that such anAUC score would place ourmodel in the top 20 leaderboard for
this dataset.

GNN Type Pre-MLP layers GC-layers Post-MLP layers Hidden units # Param. AUC Training Time (s)
GCN 1 2 3 384 24 517 826 78,69±0,86 5538
GraphConv 1 4 3 384 69 506 498 78,72±2,15 6126
MI-GNN-v1 2 6 2 256 31 872 322 78,33±0,90 5009
MI-GNN-v2 2 4 3 128 7 983 554 79,39±0,15 5741
MI-GNN-v3 2 2 3 384 25 109 954 76,25±0,03 4788

Table 5.3: Experimental results and architecture for the best-validated model on the ogbg-
molhiv dataset.

5.4 Gradient Analysis

Pursuing the goal of characterizing the strengths and the weakness of the application of the
multiplicative integration in GC operators, we theoretically analyze the gradient of the various
proposed versions of MI-GNN and we compare them with the gradient of the most similar
additive model, the GraphConv. We denote as H ∈ Rmℓ×n the matrix of all the nodes’ em-
beddings at layer ℓ, H̄ ∈ Rmℓ+1×n is the same matrix at the following layer ℓ + 1, and δij the
Kronecker delta function. In the following, we use Einstein’s notation of summation over re-
peated indexes: aij = Ai

j =
∑

k bikckj = Bi
kC

k
j . For the GraphConv, the derivatives w.r.t.

the weights are (omitting the Jacobian of ϕ and the bias term):

∂H̄x
v

∂Wa
b

= δaxH
b
v and,

∂H̄x
v

∂WΣ
c
d

= δcxH
d
uA

u
v, (5.7)

while the derivative of the MI-GNN-v1 w.r.t the weights are the following:
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σ
v

)
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It is worth noticing how the use of MI instead of an additive block leads the gradient with re-
spect toW to be influenced byWΣ and vice-versa. Moreover, in theMI-GNN, the gradient of
the weights that multiply the current node v also depends on the adjacency matrixA, making
it possible to carry information about the neighbors when learningW. This enriched gradient
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for the firstweightsmatrix of Eq. (5.1) implies that the neighborhoodwill directly influence the
projection of the node v. We can notice a similar effect comparing the gradient of the Graph-
Conv and the MI-GNN-v1 w.r.t. the node embeddings of the previous layer. Indeed for the
GraphConv, the gradient is the following:

∂H̄x
v

∂Hz
t

= δtvW
x
z +WΣ

x
zA

t
v, (5.10)

while the one of the MI-GNN-v1 is:
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(
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·
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WΣ

x
zA

t
v

)
. (5.11)

For what concerns the MI-GNN-v2, we have three weight matrices (see Eq. (5.3)). The gra-
dient of the hidden representations w.r.tW andWΣ are the same as reported in Eq. (5.9), so
the consideration made for the MI-GNN-v1 holds also for these second version. Interestingly,
the gradient w.r.t. W⊙ keeps the same capability of conveying information about the current
node and the neighborhood as in the case of the other two weights matrices:

∂H̄x
v

∂W⊙
e
f

= δex

(
Hf

v ·A
f
lH

l
v

)
. (5.12)

Differently from the gradient of the hidden representation with respect to the previously con-
sideredW andWΣ parametermatrices, in this case, the gradient is not influenced by the other
weights of the model.

Considering theMI-GNN-v3, the derivative w.r.t. the previous layer is highly influenced by
the ReLU function applied to the projection of the node v and the projection of the neighbor-
hood. Recall that the ReLU function is used to avoid instability during the training. Let us
start considering the gradient of the hidden representation of a layer w.r.t. the representation
of the layer before:
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where Θ(·) is the derivative of the ReLU. If we consider the gradient w.r.t. the weights W,
Wlog we can notice that the gradient takes into account the interaction between them, as well
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as the adjacency matrix:
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Unlike the other version ofMI-GNN, this one also considers the log of theReLU activation of
the neighbors’ embeddings and the ReLU derivative applied to the embedding of the current
node v. In particular, forWlog, this behavior ensures to have always a positive value for the
gradient.

5.5 Final Remarks

In this chapter, we conducted a thorough analysis of howMultiplicative Integration (MI) can
be utilized to define graph convolution operators. We introduced three distinct variants, each
examining different methodologies for applying MI to graph-structured data, which we have
collectively named MI-GNN. Our empirical evaluation involved testing the three MI-GNN
models across eight benchmark classification datasets. We ensured a fair experimental setup
and adopted a robust statistical framework to analyze the results comprehensively. The exper-
imental findings demonstrated that MI-GNNs achieve competitive accuracy levels while also
exhibiting shorter training times when compared to other state-of-the-art models.

Additionally, we conducted an investigation intohow the incorporationofMI impacts train-
ing by performing a theoretical analysis of the gradients. This analysis indicated thatMI-GNN
models are proficient at transmitting structural information during gradient computation for
model weight updates. Furthermore, it was observed that the gradient flow within MI-GNN
models is affected by the interplay between the variousweights of theGNN.This effect demon-
strates a superior capacity to convey information compared to the well-establishedGraphConv
layer.

73



74



6
Precise Determination of Shapley

Interactions of Arbitrary Order in GNNs

Albeit the ubiquitous use of GNNs in machine learning prediction tasks involving graph data,
their interpretability remains challenging. In explainable artificial intelligence (XAI), the Shap-
ley Value (SV) is the predominant method to quantify the contributions of individual features
to an ML model’s output. Addressing the limitations of SVs in complex prediction models,
Shapley Interactions (SIs) extend the SV to groups of features. In this appendix1, we explain
single graph predictions of GNNs with SIs that quantify node contributions and interactions
among multiple nodes. By exploiting the GNN architecture, we show that the structure of in-
teractions in node embeddings are preserved for graph prediction. As a result, the exponential
complexity of SIs depends only on the receptive fields, i.e. the message-passing ranges deter-
mined by the connectivity of the graph and the number of convolutional layers. Based on our
theoretical results, we introduce GraphSHAP-IQ, an efficient approach to compute any-order
SIs exactly. GraphSHAP-IQ is applicable to popular message-passing techniques in conjunc-
tion with a linear global pooling and output layer. We showcase that GraphSHAP-IQ sub-
stantially reduces the exponential complexity of computing exact SIs on multiple benchmark

1This Appendix is the result of the fruitful collaboration with the German universities of Bielefeld and LMU,
that lead to the paper: Fumagalli, Fabian, Maximilian Muschalik, Paolo Frazzetto, Janine Strotherm, Luca Her-
mes, Alessandro Sperduti, Eyke Hüllermeier, and Barbara Hammer [2025]. “Exact Computation of Any-Order
Shapley Interactions forGraphNeuralNetworks”. In: The International Conference on LearningRepresentations
(ICLR). Under review.
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datasets. Beyond exact computation, we evaluate GraphSHAP-IQ’s approximation of SIs on
popular GNN architectures and compare with existing baselines. Lastly, we visualize SIs of
real-world water distribution networks (WDN) and molecule structures using a SI-Graph.

6.1 Motivation

A major drawback of GNNs is the opacity of their predictive mechanism, which they share
with most deep-learning based architectures [Amara, 2022]. Reliable explanations for their
predictions are crucial when model decisions have significant consequences [H. Zhang, 2024]
or lead to new discoveries [McCloskey, 2019]. In XAIs, the SV [Shapley, 1953] is a prominent
concept to assign contributions to entities of black box MLmodels [Lundberg, 2017; Covert,
2021b; H. Chen, 2023]. Entities typically represent features, data points [Ghorbani, 2019] or
graph structures [Yuan, 2021; Ye, 2023]. Although SVs yield an axiomatic attribution scheme,
they do not give any insights into joint contributions of entities, known as interactions. Yet,
interactions are crucial to understanding decisions of complex black box ML models [Wright,
2016; I. E. Kumar, 2020; Sundararajan, 2020a; I. Kumar, 2021; Frazzetto, 2024a]. SIs [Gra-
bisch, 1999; Bordt, 2023] extend the SV to include joint contributions ofmultiple entities. SIs
satisfy similar axioms [Grabisch, 1999] while providing interactions up to a maximum num-
ber of entities, referred to as the explanation order. In this context, SVs are the least complex
SIs, whereas Möbius Interactions (MI) (or Möbius transform) [Harsanyi, 1963; Rota, 1964]
are the most complex SIs by assigning contributions to every group of entities. Thus, SIs con-
vey an adjustable explanation with an accuracy-complexity trade-off for interpretability [Bordt,
2023]. SVs, SIs and MIs are limited by exponential complexity, e.g. with 20 features already
220 ≈ 106 model calls per explained instance are required. Consequently, practitioners rely on
model-agnostic approximationmethods [Lundberg, 2017; Fumagalli, 2023] or model-specific
methods [Lundberg, 2020; Muschalik, 2024] that exploit knowledge about the model’s struc-
ture to reduce complexity. As a remedy for GNNs, the SV was applied as a heuristic on sub-
graphs [Ying, 2019; Ye, 2023], or approximated [Duval, 2021; Bui, 2024].
In this work, we address limitations of the SV for GNN explainability by computing the SIs
visualized as the SI-Graph in Fig. 6.1. Our method yields exact SIs by including GNN-specific
knowledge and exploiting properties of the SIs. In contrast to existing methods [Yuan, 2021;
Ye, 2023], we evaluate theGNNonnode levelwithout theneed to cluster nodes into subgraphs.
Insteadofmodel-agnostic approximation [Duval, 2021; Bui, 2024],weprovide structure-aware
approximation for graph prediction and prove that MIs of node embeddings indeed transfer
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Figure 6.1: SI-Graphs overlayed on amolecule graph showing exact SIs for a molecule with 30
atoms fromMTG. A GNN correctly identifies it as mutagenic. The SIs, in line with ground-
truth knowledge, highlight the NO2 groups. Computing exact SIs requires 230 ≈ 109 model
calls. GraphSHAP-IQ needs 7 693.

to graph prediction for linear readouts. In summary, our approach is a model-specific compu-
tation of SIs for GNNs, akin to TreeSHAP [Lundberg, 2020].
The main contributions include:
1. We introduce SIs among nodes and the SI-Graph (Definition 6.2.1) for graph predic-

tions of GNNs that address limitations of the SV and provide theoretical results that
exploit the GNN architecture.

2. Weprovide theoretical results that exploit theGNNarchitecture and formally prove that
interactions learned in node embeddings are preserved for graph predictions.

3. WepresentGraphSHAPInteractionQuantification (GraphSHAP-IQ), an efficientmode
to compute exact any-order SIs in GNNs or approximate them in restricted settings.

4. We showsubstantially reduced complexitywhen applyingGraphSHAP-IQon real-world
benchmark datasets, and analyze SI-Graphs of a WDN and molecule structures.

6.1.1 Explanation Complexity: From Shapley Values to Möbius
Interactions

Concepts from cooperative game theory, such as the SV [Shapley, 1953], are prominent inXAI
to interpret predictions of a black box ML model via feature attributions [Strumbelj, 2014;
Lundberg, 2017]. Formally, a cooperative game ν : P(N) → R is defined, where individ-
ual features N = {1, . . . , n} act as players and achieve a payout for every group of players
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in the power set P(N). To obtain feature attributions for the prediction of a single instance,
ν typically refers to the model’s prediction given only a subset of feature values. Since classi-
cal ML models cannot handle missing feature values, different methods have been proposed,
such as model retraining [Strumbelj, 2009], conditional expectations [Lundberg, 2017; Aas,
2021; Frye, 2021], marginal expectations [Janzing, 2020] and baseline imputations [Lundberg,
2017; Sundararajan, 2020a]. In high-dimensional feature spaces, retraining models or approx-
imating feature distributions is infeasible, imputing absent features with a baseline, known as
BShap [Sundararajan, 2020b], is the prevalent method [Lundberg, 2017; Sundararajan, 2017,
2020a,b; Covert, 2021b; Jethani, 2022]. We now first introduce the MIs as a backbone of ad-
ditive contribution measures. Later in Section 6.2, we exploit sparsity of MIs for GNNs to
compute the SV and any-order SIs.

Möbius Interactions (MIs)m : P(N)→ R, alternativelyMöbius transform [Rota, 1964],
Harsanyi dividend [Harsanyi, 1963], or internal interaction index [Fujimoto, 2006], are a fun-
damental concept of cooperative game theory. TheMI is

m(S) :=
∑
T⊆S

(−1)|S|−|T |ν(T ) and they recover ν(T ) =
∑
S⊆T

m(S) for all S, T ⊆ N.

(6.1)

From the MIs, every game value can be additively recovered, and MIs are the unique measure
with this property [Harsanyi, 1963; Rota, 1964]. The MI of a subset S ⊆ N can thus be
interpreted as the pure additive contribution that is exclusively achieved by a coalition of all
players in S, and cannot be attributed to any subgroup of S. TheMIs are further a basis of the
vector space of games [Grabisch, 2016], and therefore every measure of contribution, such as
the SV or the SIs, can be directly recovered from theMIs.

Shapley Values (SVs) for players i ∈ N of a cooperative game ν are the weighted average

ϕSV(i) :=
∑

T⊆N\i

1

n ·
(
n−1
|T |

)∆i(T ) with ∆i(T ) := ν(T ∪ i)− ν(T ) (6.2)

over marginal contributions ∆i(T ). It was shown [Shapley, 1953] that the SV is the unique
attribution method that satisfies desirable axioms: linearity (the SV of linear combinations of
games, e.g., model ensembles, coincides with the linear combinations of the individual SVs),
dummy (features that do not change the model’s prediction receive zero SV), symmetry (if a
model does not change its prediction when switching two features, then both receive the same
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SV), and lastly efficiency (the sum of all SVs equals the difference between the model’s predic-
tion ν(N) and the featureless prediction ν(∅)). A cooperative game is typically normalized,
such that ν(∅) = 0, which does not affect the SVs. The SV assigns attributions to individual
features, but it does not provide any insights about feature interactions, i.e. the joint contribu-
tion of multiple features to the prediction. In practice, however, understanding complex black
box models requires investigating interactions [I. E. Kumar, 2020; Slack, 2020; Sundararajan,
2020a; I. Kumar, 2021]. On the contrary, the MIs provide the full additive decomposition
involving all possible joint contributions. While the SVs are limited in their expressivity, the
MIs are difficult to interpret due to the exponential number of components. The SIs provide
a framework to bridge both concepts.
Shapley Interactions (SIs) explore model predictions beyond individual feature attribu-

tions, and provide additive contribution for all subsets up to explanation order k = 1, . . . , n.
More formally, the SIsΦk : Pk(N)→ R assign interactions to subsets ofN up to size k, sum-
marized inPk(N). TheSIs decompose themodel’s predictionwithν(N) =

∑
S⊆N,|S|≤k Φk(S).

The least complex SIs are the SVs, which are obtained with k = 1. For k = n, the SIs are the
MIs with 2n components, which provide the most faithful explanation of the game but entail
the highest complexity. SIs are constructed based on extensions of the marginal contributions
∆i(T ), known as discrete derivatives [Grabisch, 1999]. For two players i, j ∈ N , the discrete
derivative ∆ij(T ) for a subset T ⊆ N \ ij is defined as ∆ij(T ) := ν(T ∪ ij) − ν(T ) −
∆i(T ) −∆j(T ), i.e., the joint contribution of adding both players together minus their indi-
vidual contributions in the presence of T . This recursion is extended to any subset S ⊆ N

and T ⊆ N \ S. A positive value of the discrete derivative∆S(T ) indicates synergistic effects,
a negative value indicates redundancy, and a value close to zero indicates no joint information
of all players in S given T . The Shapley Iinteraction Index (SII) [Grabisch, 1999] provides
an axiomatic extension of the SV and summarizes the discrete derivatives in the presence of all
possible subsets T as

ϕSII(S) =
∑

T⊆N\S

1

(n− |S|+ 1) ·
(n−|S|

|T |
)∆S(T ) with ∆S(T ) :=

∑
L⊆S

(−1)|S|−|L|ν(T ∪ L).

(6.3)

Given an explanation order k, the k-Shapley Values (k-SIIs) [Lundberg, 2020; Bordt, 2023]
construct SIs recursively based on the SII, such that the interactions of SII and k-SII for the
highest order coincide. Alternatively, the Shapley Taylor Interaction Index (STII) [Sundarara-
jan, 2020b] and the Faithful Shapley Interaction Index (FSII) [Tsai, 2023] have been proposed.
In summary, SIs provide a flexible framework of increasingly complex and faithful contribu-
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tions ranging from the SV (k = 1) to the MIs (k = n). Given the MIs, it is possible to
reconstruct SIs of arbitrary order. In Section 6.2, we will exploit the sparse structure ofMIs of
GNNs to efficiently compute any-order SIs.

6.2 Any-Order Shapley Interactions for GraphNeu-
ral Networks

In the following, we are interested in explaining the prediction of a GNN fg for a graph g
with respect to nodes. We aim to decompose a model’s prediction into SIs Φk visualized by a
SI-Graph.

Definition 6.2.1 (SI-Graph) TheSI-Graph is anundirectedhypergraphgSIk := (N,Pk(N),Φk)

with node attributesΦk(i) for i ∈ N and hyperedge attributesΦk(S) for 2 ≤ |S| ≤ k.

The simplest SI-Graph displays the SVs (k = 1) as node attributes, whereas the most com-
plex SI-Graph displays theMIs (k = n) as node and hyperedge attributes, illustrated in Fig. 6.1.
The complexity of the SI-Graph is adjustable by the explanation order k, which determines the
maximum hyperedge order. The sum of all contributions in the SI-Graph yields the model’s
prediction (for regression) or the model’s logits for the predicted class (for classification). This
choice is natural for an additive contribution measure due to additivity in the logit-space. To
compute SIs, we introduce the GNN-induced graph game νg with a node masking strategy in
Section 6.2.1. The graph game is defined on all nodes and describes the output given a sub-
set of nodes, where the remaining are masked. Computing SIs on the graph game defines a
perturbation-based and a decomposition-based GNN explanation [Yuan, 2023], which is an
extension of node attributions [C. Agarwal, 2023]. In Section 6.2.2, we show that GNNswith
linear global pooling and output layer satisfy an invariance property for the node game associ-
ated with the node embeddings (Theorem 6.2.3). This invariance implies sparse MIs for the
graph game (Proposition 6.2.6), which determines the complexity of MIs by the correspond-
ing receptive fields (Theorem 6.2.7), which substantially reduces the complexity of SIs in our
experiments. In Section 6.2.3, we introduce GraphSHAP-IQ, an efficient algorithm to exactly
compute and estimate SIs on GNNs.
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6.2.1 A Cooperative Game for Shapley Interactions on Graph
Neural Networks

Given a GNN fg, we propose the graph game for which we compute axiomatic and fair SIs.

Definition 6.2.2 (GNN-induced Graph and Node Game) For a graph g = (V,E,X) and
a GNN fg , we let N := {i : vi ∈ V } be the node indices and define the graph game νg :

P(N)→ R as

νg(T ) := fg,ŷ(X
(T )) withX(T ) := (x

(T )
1 , ...,x(T )

n )t ∈ Rn×d0 and x(T )
i :=

xi if i ∈ T,

b if i ̸∈ T,

with i ∈ N and baseline∈ Rd0 . In graph regression fg,ŷ ≡ fg and for graph classification fg,ŷ
is the component of the predicted class ŷ of fg . We further introduce the (multi-dimensional) node
game νi : P(N)→ Rdℓ as νi(T ) := fi(X

(T )) for i ∈ N and each node vi ∈ V .

The graph game outputs the prediction of the GNN for a subset of nodes T ⊆ N by
masking all node features of nodes vi with i ∈ N \ T using a suitable baseline , illustrated
in Fig. 6.2, left. Computing such SVs is known as BShap [Sundararajan, 2020b] and a promi-
nent approach for feature attributions [Lundberg, 2017; Covert, 2021b; H. Chen, 2023]. As
a baseline b, we propose the average of each node feature over the whole graph. By definition,
the prediction of the GNN is given by νg(N) = fg(X), and due to the efficiency axiom, the
sum of contributions in the SI-Graph yields themodel’s prediction, and thus a decomposition-
based GNN explanation [Yuan, 2023]. The graph and the node game are directly linked as

νg(T ) = fg,ŷ(X
(T )) = σŷ(Ψ({{fi(X(T ))} | v ∈ V })) = σŷ(Ψ({{νi(T )} | i ∈ N})),

(6.4)

where σŷ outputs the component of σ for the predicted class ŷ. The number of convolutional
layers ℓ determines the receptive field, i.e. the message-passing range defined by its ℓ-hop neigh-
borhood

N (ℓ)
i := {j ∈ N | dg(i, j) ≤ ℓ}with dg(i, j) := length of shortest path from vj to vi in g.

Consequently, the node game νi is unaffected by maskings outside its ℓ-hop neighborhood.
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Theorem 6.2.3 (Node Game Invariance) For a graph g and an ℓ-Layer GNN fg , let νi be the
GNN-induced node game with i ∈ N . Then, νi satisfies the invariance νi(T ) = νi(T ∩ N (ℓ)

i )

for T ⊆ N .

Node Masking: Computing SIs on the graph game is a perturbation-based explanation
[Yuan, 2023], where also other masking strategies were proposed [C. Agarwal, 2023]; for ex-
ample, node masks [Ying, 2019; Yuan, 2021], edge masks [Luo, 2020; Schlichtkrull, 2021]
or node feature masks [Ying, 2019; Yuan, 2021; C. Agarwal, 2023]. Our method is not lim-
ited to a specific masking strategy as long as it defines a game with the invariance property
(Theorem 6.2.3). We implement our method with the well-established and theoretically un-
derstood BShap [Sundararajan, 2020b]. Alternatively, the T -induced subgraph could be used,
but GNNs are fit to specific graph topologies, such as molecules, and perform poorly on iso-
lated subgraphs [Alsentzer, 2020]. However, othermaskings could emphasize different aspects
of GNNs, which we leave to future work. Due to the invariance, we show that MIs and SIs of
the graph game are sparse. To obtain our theoretical results, we require a structural assumption.

Assumption 6.2.4 (GNN Architecture) Werequire the global poolingΨ and the output layer
σ to be linear functions, e.g. Ψ is a mean or sum pooling operation and σ is a dense layer.

Linearity Assumption: In our experiments, we show that popular GNN architectures yield
competitive performances under Assumption 6.2.4 on multiple benchmark datasets. In fact,
such an assumption should not be seen as a hindrance, as it is the norm in GNN benchmark
evaluations [Errica, 2020]. Furthermore, simple global pooling functions, such as sumormean,
are adopted in many GNN architectures [Xu, 2019; L. Wu, 2022], while more sophisticated
pooling layers donot always translate into empirical benefits [Mesquita, 2020;Grattarola, 2024].
Likewise, a linear output layer is a common design choice, and the advantage of deeper output
layers must be validated for each task [You, 2020].

6.2.2 ComputingExactShapleyandMöbius Interactionsforthe
Graph Game

Given aGNN-induced graph game νg fromDefinition 6.2.2withAssumption 6.2.4, i.e. Ψ and
σ are linear, then the MIs of each node game are restricted to the ℓ-hop neighborhood. Intu-
itively, maskings outside the receptive field do not affect the node embedding. Consequently,
due to the linearity ofMIs in the vector space of games, theMIs of the graph game are restricted
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Figure 6.2: Illustration of the graph game νg. Masked nodes
(grey) are imputed by baseline , and embeddings are deter-
mined by the receptive field (left). Subsequently, a linear pool-
ing (Ψ) and output layer (σ) yield the GNN-induced graph
game output.

by all existing ℓ-hop neighborhoods. More formally, due to the invariance of the node games
(Theorem6.2.3), theMIs that are not fully contained in the ℓ-hop neighborhoodN (ℓ)

i are zero.

Lemma 6.2.5 (Trivial Node Game Interactions) Letmi : P(N) → Rdℓ be the MIs of the
GNN-induced node game νi for i ∈ N under Assumption 6.2.4. Then, mi(S) = 0 for all
S ̸⊆ N (ℓ)

i .

Lemma 6.2.5 yields that the interactions outside of the ℓ-hop neighborhood do not have to be
computed. Due to the linearity of theMIs andAssumption6.2.4, the interactions of theGNN-
induced graph game are equally zero if they are not fully contained in any ℓ-hop neighborhood.

Proposition 6.2.6 (Trivial Graph Game Interactions) Letmg : P(N) → R be the MIs of
the GNN-induced graph game νg under Assumption 6.2.4 and let I :=

⋃
i∈N P(N

(ℓ)
i ) be the

set of non-trivial interactions. Then,mg(S) = 0 for all S ⊆ N with S /∈ I .

I is the set of non-trivial MIs, whose size depends on the receptive field of the GNN. The size
of I also directly determines the required model calls to compute SIs.
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Theorem 6.2.7 (Complexity) For a graph g and an ℓ-Layer GNN fg , computingMIs and SIs
on the GNN-induced graph game νg requires |I|model calls. The complexity is thus bounded by

|I| ≤
∑
i∈N

2|N
(ℓ)
i | ≤ n · 2n

(ℓ)
max ≤ n · 2

dℓ+1
max−1

dmax−1 ,

where n(ℓ)
max := maxi∈N |N (ℓ)

i | is the size of the largest ℓ-hop neighborhood and dmax is the max-
imum degree of the graph instance.

In other words, Theorem 6.2.7 shows that the complexity of MIs (originally 2n) for GNNs
depends at most linearly on the size of the graph n. Moreover, the complexity depends ex-
ponentially on the connectivity dmax of the graph instance and the number of convolutional
layers ℓ of the GNN. Note that this is very rough theoretical bound. In our experiments, we
empirically demonstrate that in practice formany instances exact SIs can be computed, even for
large graphs (n > 100). Besides this upper bound, we empirically show that the graph density,
which is the ratio of edges compared to the number of edges in a fully connected graph, is an
efficient proxy for the complexity.

6.2.3 GraphSHAP-IQ:AnEfficientAlgorithmforShapley Inter-
actions

Building on Theorem 6.2.7, we propose GraphSHAP-IQ, an efficient algorithm to compute
SIs for GNNs. We first present the simplified method to compute exact SIs, which we then ex-
tend to an approximation in restricted settings. The computationof exact SIswithGraphSHAP-
IQ is outlined in Section 6.2.1. First, GraphSHAP-IQ identifies the set of non-zero MIs I
based on the given graph instance. The GNN is then evaluated for all maskings contained in
I . Given these GNN predictions, the MIs for all interactions in I are computed. Based on
the computedMIs, the SIs are computed using the conversion formulas. Lastly, GraphSHAP-
IQ outputs the exact MIs and SIs. For graphs with high connectivity and GNNs with many
convolutional layers, computing exact SIs with Section 6.2.1 could remain infeasible. We thus
present an extension of GraphSHAP-IQ for efficient approximation of SIs. The core idea is to
introduce a hyperparameterλ, which limits the highest order ofMIs that are computed. Hence,
GraphSHAP-IQ outputs exact values, if λ = n

(ℓ)
max.
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Dataset Description Model Accuracy by Layer (%)

Dataset Graphs dout
Nodes
(avg)

Density
(avg)

GCN GAT GIN
1 2 3 1 2 3 1 2 3

Benzene (BNZ) 12000 2 20.6 22.8 84.2 88.6 90.4 83.1 85.1 85.7 84.9 90.5 90.8
FluorideCarbonil (FLC) 8671 2 21.4 21.6 82.4 83.9 83.9 82.4 82.2 82.4 84.6 87.2 87.1
Mutagenicity (MTG) 337 2 30.3 18.3 77.8 80.7 80.3 72.6 73.6 74.8 77.8 77.4 77.5
AlkaneCarbonyl (ALC) 1125 2 21.4 21.5 98.7 97.8 99.1 98.2 96.3 97.3 96.9 97.3 97.8
PROTEINS (PRT) 1113 2 39.1 42.4 75.2 71.1 74.0 75.3 60.5 79.8 79.3 74.9 67.7
ENZYMES (ENZ) 600 6 32.6 32.0 34.2 37.5 35.8 32.5 35.0 35.8 36.7 35.0 39.2
COX2 (CX2) 467 2 41.2 10.6 87.2 86.1 87.2 81.9 87.2 85.1 84.0 85.1 85.1
BZR (BZR) 405 2 35.8 13.0 90.1 87.7 90.2 88.9 86.4 87.7 88.9 88.9 88.9

Table 6.1: Summary of datasets, models, and GraphSHAP-IQmedian speed-up.

Figure 6.3: Complexity ofGraphSHAP-IQagainstmodel-agnostic baseline (dashed) inmodel
calls (in log 10) by number of nodes (n) for all instances of BZR (left) and MTG (middle,
right) visualized by number of convolutional layers (left, middle) and graph density for a 2-
Layer GNN (right).

6.3 Experiments

In this section, we empirically evaluate GraphSHAP-IQ for GNN explainability, and show-
case a substantial reduction in complexity for exact SIs (Section 6.3.1), benefits of approxi-
mation (Section 6.3.2), and explore the SI-Graph for Water Distibution Networks (WDN)
and molecule structures (Section 6.3.3). Following Amara [2022], we trained a GCN [Kipf,
2017], GIN [Xu, 2019], and GAT [Velickovic, 2018] on eight real-world chemical datasets
for graph classification and a WDN for graph regression, cf. Table 6.1. We trained all models
under Assumption 6.2.4 and reported test accuracies, that are comparable to existing bench-
marks [Errica, 2020; You, 2020].
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6.3.1 Complexity Analysis of GraphSHAP-IQ for Exact Shapley
Interactions

In this experiment, we empirically validate the benefit of exploiting graph andGNN structures
withGraphSHAP-IQ. The complexity is measured by the number of evaluations of the GNN-
induced graph game, i.e. the number ofmodel calls of theGNN,which is the limiting factor of
SIs [Fumagalli, 2023; Kolpaczki, 2024b; Muschalik, 2024]. For every graph in the benchmark
datasets, described inTable 6.1, we compute the complexity ofGraphSHAP-IQ,where the first
upper bound from Theorem 6.2.7 is used ifmaxi∈N |N (ℓ)

i | > 23, i.e. the complexity exceeds
223 ≈ 8.3 × 106. Fig. 6.3 displays the log-scale complexity (y-axis) by the number of nodes
n (x-axis) for BZR (left) andMTG (middle, right) for varying number of convolutional layers
ℓ (left, middle) and by graph density for a 2-Layer GNN (right). The model-agnostic baseline
is represented by a dashed line. Fig. 6.3 shows that the computation of SIs is substantially re-
duced byGraphSHAP-IQ. Even for large graphswithmore than 100 nodes, where the baseline
requires over 2100 ≈ 1030model calls, many instances can be exactly computed for 1-Layer and
2-Layer GNNs with fewer than 105 evaluations. In this case, the complexity of GraphSHAP-
IQ is almost constant. Figure 6.3 (right) shows that the graph density is an efficient proxy of
complexity, with higher values for instances near the baseline.

6.3.2 ApproximationQuality of GraphSHAP-IQ

For densely connected graphs and GNNs with many layers, exact computation of SIs might
still be infeasible. We thus evaluate the approximation of SIs with GraphSHAP-IQ, which
computes all MIs up to order λ. We compare GraphSHAP-IQ with current state-of-the-art
model-agnostic baselines to approximate SIs for SVs and 2-SIIs and large graphs. For the SV,
we applyKernelSHAP [Lundberg, 2017],Unbiased KernelSHAP [Covert, 2021a], k-additive
SHAP [Pelegrina, 2023], Permutation Sampling [Castro, 2009], SVARM [Kolpaczki, 2024a],
and L-Shapley [J. Chen, 2019]. We estimate 2-SII values with KernelSHAP-IQ [Fumagalli,
2024], Inconsistent KernelSHAP-IQ [Fumagalli, 2024], Permutation Sampling [Tsai, 2023],
SHAP-IQ [Fumagalli, 2023], and SVARM-IQ [Kolpaczki, 2024b]. We select 10 graphs con-
taining 30 ≤ n ≤ 40 nodes for the MTG, PRT, and BZR benchmark datasets. For each
graph, we computeMIs for each λwith GraphSHAP-IQ and estimate SVs and 2-SIIs with the
same number of model calls as the baselines. Ground truth (GT) SVs and 2-SIIs are computed
via GraphSHAP-IQ and compared in terms of MSE (lower is better). In Fig. 6.4, we observe
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Figure 6.4: Approximation of SIs withGraphSHAP-IQ (green) andmodel-agnostic baselines
for MTG (left). At budgets, where GraphSHAP-IQ reaches exact SIs, the baselines achieve
varying estimation qualities (middle) which prohibits drawing reliable conclusions from the
explanations (right).

that GraphSHAP-IQ outperforms the sampling-based baselines in settings with a majority of
lower-order MIs (MTG and 2-layer GIN). Model-agnostic baselines exhibit a comparable es-
timation performance in settings with higher-order interactions (PRT and 2-layer GAT). Yet,
approximated SIs exhibit an approximation error, cf. Fig. 6.4 (right), and should be interpreted
with care.

6.3.3 Real-WorldApplicationsofShapley Interactionsandthe
SI-Graph

WenowapplyGraphSHAP-IQ in real-world applications.Monitoringwater quality inWDNs
requires insights into a dynamic system governed by local partial differential equations. Here,
we investigate the spread of chlorine as a graph-level regression of a WDN, where a GNN pre-
dicts the fraction of nodes chlorinated after some time. Based on the Hanoi WDS [Vrachimis,
2018], we create a temporal WaterQualirt (WAQ) dataset containing 1 000 graphs consisting
of 30 time steps. We train and explain a simple GNN, which processes node and edge features
like chlorination level at each node and water flow between nodes. Fig. 6.5 show that 2-SIIs
spread over the WDS aligned with the water flow. Therein, mostly first-order interactions in-
fluence the time-varying chlorination levels.
Benzene rings in molecules are structures consisting of six carbon (C) atoms connected in a
ring with alternating single and double bonds. We expect a well-trained GNN to identify ben-
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Figure 6.5: Exact SIs values for three example graph structures. SVs illustrate the trajectory of
chlorination levels in a WDN (a). STII (order 2) values showcase that a Pyridine molecule is
not classified as benzene (b), and the largest positive MI for a benzene molecule is the benzene
ring (c).

zene rings to incorporate higher-orderMIs (order≥ 6). Fig. 6.5 shows twomolecules and their
SI-Graphs computed byGraphSHAP-IQ.The Pyridinemolecule in Fig. 6.5 (b) is correctly pre-
dicted to be non-benzene as the hexagonal configuration features a nitrogen (N) instead of a
carbon, which is confirmed by the SVs highlighting the nitrogen. STIIs of order 2 reveal that
theMI of nitrogen is zero and interactionswith neighboring carbons are non-zero, presumably
due to higher-order MIs, since STII distributes all higher-order MIs to the pairwise STIIs. In
addition, STIIs among the five carbon atoms impede the prediction towards the benzene class.
Interestingly, opposite carbons coincide with the highest negative interaction. The MIs for a
benzenemoleculewith 21 atoms in Fig. 6.5 (c) reveal that the largest positiveMI coincideswith
the 6-wayMI of the benzene ring.
Mutagenicity of molecules is influenced by special compounds like nitrogen dioxide (NO2)
[Kazius, 2005]. Fig. 6.1 shows SIs for a MTG molecule, which GNN accurately identifies as
mutagenic. 2-SIIs and MIs both show that not the nitrogen atom but the interactions of the
NO2 bonds contributed the most.

6.4 Final Remarks

We presented GraphSHAP-IQ, an efficient method to compute SIs that applies to all popular
message passing techniques in conjunction with a linear global pooling and output layer. As-
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sumption 6.2.4 is a common choice forGNNs [Xu, 2019; Errica, 2020; L.Wu, 2022] and does
not necessarily yield lower performance [Mesquita, 2020; You, 2020; Grattarola, 2024], which
is confirmed by our experiments. However, exploring non-linear choices that preserve trivial
MIs is important for future research. Masking node features with a fixed baseline, known as
BShap, preserves the topology of the graph structure and is a well-established approach [Sun-
dararajan, 2020a]. Nevertheless, alternatives such as induced subgraphs, edge-removal, or learn-
able masks, could emphasize other properties of the GNN and should be explored. Lastly, the
deterministic approximation of GraphSHAP-IQ shows mixed results when higher-order MIs
dominate, where GNN-informed sampling methods using Proposition 6.2.6 is promising fu-
ture work.
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7
AGraph-Based Approach for Candidate

Data in HRAnalytics

In the world of HR, the integration of advanced data analysis techniques has become a key fac-
tor in gaining competitive advantages [Wirtky, 2016]. This chapter embarks on an in-depth
exploration of the application of ML techniques to HR data, specifically concentrating on de-
veloping and analyzing candidate networks via graph-based methodologies.

The domain ofHRanalytics has persistently dealtwith a notable challenge: the limited avail-
ability of publicly accessible datasets. To address this issue, our primary research focus has been
to generate a new dataset derived from real-world recruitment cases. Although this dataset has
not been publicly released due to privacy matters, it forms a crucial underpinning for our re-
search initiatives. The dataset includes both structured data obtained from questionnaires and
unstructured information extracted from candidates’ CVs, collected with the close collabora-
tion of Amajor’s team.

The study in this chapter brings two main contributions1. Initially, we explore methods to
convert standard HR data into graph structures, where candidates are depicted as nodes, and
their significant interrelationships constitute the edges. This methodology enables us to repre-

1This chapter is based on Frazzetto, Paolo, Muhammad Uzair-Ul-Haq, and Alessandro Sperduti [2023b].
“Enhancing Human Resources through Data Science: a Case in Recruiting”. In: Proceedings of the 2nd Italian
Conference on Big Data and Data Science (ITADATA 2023), Naples, Italy, September 11-13, 2023. Vol. 3606.
CEURWorkshop Proceedings. CEUR-WS.org. url: https://ceur-ws.org/Vol-3606/paper71.pdf
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sent the complex network of links within the talent pool, potentially uncovering patterns and
insights thatmight bemissed in conventional tabular formats. Secondly, we leverage Large Lan-
guage Models (LLMs) to draw out rich, contextual information from candidates’ CVs. This
approach allows us to capture detailed nuances about candidates’ skills, experiences, and po-
tential, which might be overlooked by traditional keyword-based systems.
The primary objective of this chapter is to investigate whether these graph-based represen-

tations of candidate data, enhanced by LLM-extracted features, can outperform traditional
tabular data approaches in various HR analytics tasks. We conduct a comparative analysis,
examining the efficacy of GNNs against conventional NN and other baseline models. This
exploration serves as a crucial first step in understanding the potential of graph-based methods
in HR analytics. The approaches presented here lay the groundwork for more sophisticated
methods that will be explored in subsequent chapters.

7.1 Challenges in HRData Analytics

The automated extraction of information from CVs, job postings (JP), and related HR docu-
ments has long caught the attention ofmany researchers and companies [Bizer, 2005; Yu, 2005;
Yi, 2007]. However, the lack of publicly available datasets bottlenecksmost of the progress. De-
spite the scarcity of datasets, there have been some efforts to extract information from resumes
and job postings with the aim of boosting HR performance.

For example, Fernández-Reyes [2019]proposed theuse of an averageword embeddingmodel
for CV retrieval based on the job description (JD). The embeddings of CVs are trained from
scratch and combined with the pre-trained word2vec embeddings using a hybrid embedding
model. The JPs are also embedded using a pre-trainedword2vecmodel, and cosine similarity is
used as a measure to find relevance between the CV and job description. However, to the best
of our knowledge, the dataset used in the research is not publicly available.

Jiang [2020] proposed the use of machine learning to match candidates with job postings
on online platforms (CJM). The authors used real-case data collected by the recruitment team
between January 2019 and October 2019. They collected about 13 thousand jobs with 580

thousand candidates and 1.3 million resumes. However, the authors claim the dataset to be
sensitive anddonot release it publicly. Similarly, Yao [2022] proposed amethod to quantify the
CJM. Theymodel the task with distantly supervised skill extraction to identify the skill entities
from job postings and resumes using skill entity dictionaries. The relevance between a resume
and a job description is measured according to the matching score of the skill entities. The
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dataset used in the research contains 21 thousand job postings and 86 thousand CVs provided
by a high-tech company. So far, the authors have not released the publicly available dataset.

On the other hand,MikeZhang [2022] released anovel dataset for skill extractiononEnglish
job postings called SKILLSPAN. The authors also outlined the annotation guidelines created
by domain experts to annotate hard and soft skills in job postings. The dataset consists of 14.5
thousand sentences, of which 12.5 thousand are annotated. The dataset is divided into three
categories: BIG, HOUSE, and TECH. The authors only released the HOUSE and TECH
categories of the dataset to the public. However, the dataset is limited to job postings, and only
skill entities are annotated.

Given the limited availability of publicly available datasets, we address this problem at hand
and build our HR dataset.

7.2 Data Collection

Thegatheringof reliable data inHRrecruitment is a complex task that goes beyond the realmof
academia, as it requires external support from the industry. While academic research provides
valuable insights and theoretical frameworks, it often falls short of capturing the intricacies and
practicalities of the recruitment process in real-world settings. Additionally, HR recruitment
involves gathering a wide range of data, including resumes, application forms, psychometric
assessments, interviews, and performance evaluations. This data collection process requires
collaboration with organizations willing to share their recruitment data and provide access to
their internal information systems.

This whole research has been made possible by the partnership and support of Amajor SB
(Section 2.2). This partnership enabled us to obtain authentic and diverse datasets, allowing
us to analyze and develop models that closely mirror the challenges and complexities faced by
HR practitioners. This collaborative approach ensures that our research findings are relevant,
applicable, and aligned with the practical needs of the industry, ultimately leading to more
effective and impactful HR recruitment strategies.

7.2.1 Dataset Description

The data were collected from real-case candidates’ applications for 195 different job postings
and vacancies, mostly in northeast Italy. The positions vary in terms of seniority, role, business
area, and corporate size. The time frame spans from January 1st, 2021 toMay 31st, 2023. From
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a starting pool of more than 13, 000 applications, we filtered out those candidates who did
not fill in the privacy consent for this research, those who did not complete the assessment
questionnaire, and those who did not submit their CVs.

7.2.2 Classes Identification

The job selection process typically involves several steps that candidates must navigate. In our
scenario (part of Section 2.2.4), candidates must first submit their application, including their
CV and other basic data, and fill in the assessment questionnaire. After the initial screening
by HR recruiters, candidates are invited to participate in one or more interviews, which can
be conducted in various formats, such as video interviews or in-person meetings. From the
outcome of the interviews, only a handful of candidates are shortlisted and presented to the
future employer. In thefinal stage, the employer selects one candidate, negotiateswith them the
job offers, reviews the employment contracts, and completes the necessary paperwork before
officially joining the organization.

In an ML framework, we can consider each of the previous states as a label, thus modeling
the process as amulti-class classification problem. Alternatively, since the process is consequen-
tial, one could model it as a regression task over an interval. Nonetheless, for this first analysis
and release of the dataset, we opted to consider binary labels. We realized that in real-case appli-
cations, there are many deviations from this standard process; besides, the data recorded in the
information systems may be miss-classified or missing for some candidates and stages. There-
fore, we focus on those candidates who completed all stages up to the first interview—an HR
specialist has checked their CV, questionnaire, and interview and made the decision to bring
them further in the selection (positive labels) or deemed that they were not the best-suited can-
didates for that role (negative labels). These steps left out N = 2, 647 valid candidates, of
which 1, 674 (63%) with positive labels and 973 (37%) with negative ones. More numerous
and complex data structures will be presented in the following chapters, resulting from addi-
tional collection, cleaning, and pre-processing of the data.

7.2.3 CV Embeddings

State-of-the-art Large Language Models (LLMs) have succeeded in various natural language
processing tasks [Zhao, 2024]. These models can be pre-trained on large corpora to capture
contextual informationofwords in a text. CVs are unstructureddocuments that consist of long
textual information. In this case, we use an XLM-RoBERTa-Longformer [Conneau, 2020], a

96



multilingual model with an input size of 4, 096 tokens. The multilingual characteristic allows
us to capture information in different languages, whereas the larger input size enables process-
ing long documents.

The documents are pre-processed by removing stop-words, extra spaces, and special charac-
ters. These documents are tokenized and thenpassed through the pre-trainedXLM-RoBERTa-
Longformer to extract the word embeddings of all the tokens. Each token is represented by
a 768-dimensional feature vector. Therefore, a document consisting of N tokens returns a
N × 768 dimensional feature matrix. The average document length is of 546 tokens, rang-
ing from a minimum of 53 to a maximum of 8, 526 tokens. Processing such large matrices
is computationally expensive; therefore, we average the embedding vector of all the tokens in
the document, resulting in a 768-dimensional feature vector representing the document in an
embedding space.

7.2.4 Questionnaire Data

Personality and behavior assessments through questionnaires are one valuable tool in HR se-
lection processes and organizational psychology [Bailey, 2017]. These assessments aim to gain
insight into candidates’ traits, characteristics, and behavioral tendencies, providing a deeper
understanding of their fit within the organization and job role. Some questionnaires are de-
signed specifically for personality assessment and others are designed to measure some abilities
or behaviors. There exists a plethora of different kinds of tests, with different validity and us-
age amongHRpractitioners [Furnham, 2008]. Nevertheless, the quantitative nature of and its
ease of collection allow collection, allows for rigorous statistical analysis and enables standard-
ized evaluation across candidates, promoting fairness and consistency in the selection process.

We collected questionnaire data following Amajor’s business model (Section 2.2.2). The
tool used for the candidates’ assessment is the so-called A+ Questionnaire: a set of 242 ques-
tions with 3-scale Likert-type answers (yes/maybe/no or similar, see Fig. 7.1) covering various
aspects of one’s behavior, habits, and personality, developed by the company team after work-
ing alongside more than 120 clients over a period of five years [Peronato, 2022]. The answers
are grouped and processed following a proprietary factor model that gives an estimate of one’s
hidden traits; however, its analysis and discussion go beyond the scope of this work. In the fol-
lowing section, we describe a novel and general approach to exploit Likert-type questionnaire
data to find patterns among respondents.
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Is it necessary to give up something today to be better off tomorrow?

No Maybe Yes

Figure 7.1: Example of a Likert-scale question used in the candidates’ assessment A+ Ques-
tionnaire.

7.2.5 FromQuestionnaires to Graph

Likert-type scales are widely employed in academic and industrial settings to capture human
facets due to their user-friendly nature, simplicity of development, and ease of administration
[Joshi, 2015]. It enables respondents to answer questions in a closed-form way, picking only
one value on an ordered scale according to some sort of preference or agreement. Due to
the fact that the perceived distance between two consecutive items cannot be defined or pre-
sumed equal [Munshi, 2014], such a scale cannot be analyzed by classical statistical methods
defined on a metric space or parametric tests but requires specific modeling and assumptions
[Disegna, 2022]. In order to link candidates that give similar answers, we resort to graphs and
Network Science. Such amore expressive data structure occurs inmany fields of science and en-
gineering [Barabási, 2013]. However, translating tabular data to graphs is not trivial [K. Zhou,
2022; J. Liu, 2023] as it requires domain knowledge and heuristics to define the nodes and their
relationships.

Our approach to tackling these issues is straightforward and takes advantage of the specific
structure of Likert-type data. Given any Likert scale Questionnaire Q = {q1, q2, . . . , qn}
made up of n questions, each possible answer ai takes value in an ordered set that w.l.o.g. we
can define as A = {1, 2, . . . , L} ⊂ Nn, so ai ∈ A, ∀i = 1, . . . , n. The order relation
depends on each qi, andwe assume that it is universal, i.e., the questionnaire iswell-written, and
all respondents understand each question. In this way, each completed questionnaire can be
formulated as a specific collection of all the possible answersa = {a1, . . . , an}, ∀ai ∈ A and a
respondent can be described as a function r : Q → A× . . .×A = An, r(Q) = a. We desire
to link candidates/respondents that provide similar answers, thus having similar behaviors and
personalities, without resorting to the hidden variables given by factor analysis. Next, we have
to define a distance function d(u,v) : An × An → R between two responses u,v. Our
desiderata are that respondents who give the exact same answers will be closer, whereas when
the answers are on the opposite side of the scale, the distances should be greater. Additionally,
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we want to avoid the Euclidean metric since it scales quadratically withL, but Likert scales are
perceived as linear [Munshi, 2014]. Therefore, the ideal candidate is the Manhattan distance
or ℓ1 norm:

dM(u,v) =
n∑

i=1

|ui − vi| ui, vi ∈ A. (7.1)

We brought this idea further by considering that Likert-type answers are usually contrasting,
i.e., one end of the scale is the opposite of the other, with all the ranges in between. Therefore,
in the case of an odd number of choicesL, a middle value is perceived as a neutral or indefinite
answer [Boateng, 2018]. We want to emphasize this contrast and penalize the neutral answers,
as they provide little insight into the analysis. For these reasons, we center our answer set in
zero Ã = {−⌊L/2⌋, . . . , 0, . . . , ⌊L/2⌋} and we exploit this symmetry with a redefined Bray-
Curtis similarity [Bray, 1957]:

dBC(u,v) = 1−
∑

i|ui − vi|∑
i|ui + vi|

. (7.2)

Notice that this measure of similarity has the desired properties, being normalized to 1 when
the answers of two questionnaires are exactly the same. On the contrary, it diverges to −∞
when they are always at the opposite. In practice, dBC(u,v) ≤ 0 ⇐⇒

∑
i|ui − vi| ≥∑

i|ui+vi| and the latter holds when themajority of answers have opposite signs, hencemean-
ing.
In our specific business case, we have L = 3 and thus Ã = {−1, 0, 1}, where 1 stands for

the positive/affirmative answer, 0 is maybe/neutral, and−1 is no/negative. We then computed
the pairwise similarity of Eq. (7.2) for all pairs. These values directly translate into a graph in
which each node is a candidate, who is connected to all other candidates bymeans of aweighted
adjacency matrixA, whose entries are consequently defined asAuv = dBC(u, v) = Avu. In
this way, we obtain a fully connected graph with an order ofN2 ≃ 3.5 × 106 links. We also
apply two heuristics to reduce its complexity and keep only the most significant connections.
First, we set the negative values to zero, enforcing no similarity between such different ques-
tionnaires. This results in the removal of 1.47 × 105 links. The corresponding boxenplot
distribution is shown in Fig. 7.2, noticing that we retain a homogeneous distribution of sim-
ilarities along a right-tail of candidates with almost identical answers. Secondly, our aim is to
drop the links with a weight close to zero, starting from the lowest values. Therefore, we apply
edge percolation [M. E. J. Newman, 2001] and heuristically stop when the largest component
has 95% of the total nodes. As shown in Fig. 7.3, an additional 1.1×105 edges can be removed.
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The corresponding threshold of the similarity dBC(u, v) is 0.07, so all the remaining links con-
nect candidates with a similarity greater than this threshold. The basic statistics of the obtained
graph are reported in Table 7.1, and an illustrative example is shown in Fig. 7.4.

Such a process allowed us to find a reasonable graph of candidates based on their responses
on a Likert-type questionnaire. Our research question is to test whether such an approach can
improve the identification of patterns and the prediction of the class of new candidates, given
that they provided similar answers to other labeled candidates.

Figure 7.2: Boxenplot distribution of the Bray-Curtis similarity for allN2 questionnaire pairs;
before (left) and after (right) clipping the negative values.

(a) (b)

Figure 7.3: (a): Size of the largest connected componentby removal of the linkswith ascending
similarity. The dotted line indicates the point where the largest component has 95% of the
original nodes; thus, we retain all the connections up to that point. (b): Degree distribution of
the resulting graph.
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#Nodes #Links Avg.
Degree

Avg. Clustering
Coeff.

Avg. Path
Length

Graph
Diameter

Graph
Density

2647 518994 392 0.615 2.141 8 0.148

Table 7.1: Basic Properties of the Candidates Graph

Alice

Bob

Charlie

David

Eva

Figure 7.4: Simplified example ofGraph ofCandidate Profiles based on theA+Questionnaire
answers. Each candidate is a node and is connected with other nodes if their answer distance is
dBC(u, v) ≥ 0.07, and the edge thickness denotes its value.

7.3 Candidates Classification

This section explores how ML can be leveraged to perform candidate classification based on
this novel dataset. Two different approaches have been investigated—relying on unstructured
or structured data.

The first approach focused on tabular data analysis, where traditional machine learning al-
gorithms were applied to extract insights and patterns from unstructured data. This pipeline
usually involves feature engineering, model selection, architecture search, hyper-parameter op-
timizations, and training on the tabular dataset to make predictions and classifications. Each
of these steps may be challenging on its own; therefore, we resorted to off-the-shelf AutoML
tools to automate this procedure. In particular, we exploited AutoGluon [Erickson, 2020] for
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its simplicity and the availability of Neural Networks among its models.
Besides employing the tabular method, we investigated the application of GNNs to analyze

the previously extracted graph structures of the dataset. By representing the data as a graph,
we leveraged GNNs to capture the relationships and dependencies that emerge from question-
naire data among the entities. The GNN model enables us to learn from both the nodes’ at-
tributes (i.e., the CV embeddings) and the relational information present in the graph, thereby
capturing complex patterns and interactions that traditional tabular approaches might miss.
Contrary to tabular or multi-modal data, AutoML tools for GNNs are still in their infancy
and are under active development [K. Cao, 2023]. However, we adopted our graph for the
AutoGL framework [Guan, 2021], which enables us to test some of the most common GNN
layers for the node classification task.

By employing these two complementary approaches, we aimed to comprehensively under-
stand the dataset and extract meaningful insights from different perspectives. All the experi-
mentswere conducted in the same environment and employed open-source libraries. We tested
different models for each scenario, with 10-fold cross-validation on a [80, 10, 10] train/valida-
tion/test split. We disabled any other feature selection/engineering techniques, as we already
employ features extracted from raw HR data, and the models’ comparisons would be unfair.
For the same reason, we turned off bagging and multi-layer stack ensembling useful to boost
predictive accuracy [Caruana, 2004].

7.3.1 Results

The experimental results are reported in Table 7.2. Our baseline model is a naive class prior
probability classifier that always predicts the most common class (the “positive” candidates)
with an expected accuracy of 63.24%. We considered RandomForest [Breiman, 2001] and
CatBoost [Prokhorenkova, 2018] since theyhave beenproven tobe fast to train and effective on
tabular data in many domains. Concerning the GNNs, we selected the modules GraphSAGE
[Hamilton, 2017], GAT [Velickovic, 2018], and CGN [Kipf, 2017]. The Neural Networks
and GNNs were trained with the default hyperparameters and architecture spaces; therefore,
their performance could improve with more extensive model selections.
CV embeddings alone are substantially equivalent to the class prior classifier. This suggests
that CV embeddings should be improved, and the baseline LLMs are unable to grasp essential
information without any domain knowledge or fine-tuning [Uzair-Ul-Haq, 2024]. Consider-
ing that the Questionnaire is an essential element in the examined HR process, the fact that
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Data Model Accuracy [%] Std. Dev.

Baseline Class Prior Classifier 63.24 -

Tabular (CV Embeddings)
NN 63.40 2.16
RandomForest 61.51 1.79
CatBoost 64.53 1.51

Tabular (Questionnaire)
NN 75.78 2.54
RandomForest 76.99 1.42
CatBoost 77.16 1.20

Tabular (CV Emb. + Qst.)
NN 76.45 2.44
RandomForest 75.27 1.09
CatBoost 76.91 1.46

Graph (CV Emb.)
GraphSAGE 77.35 1.77
GAT 76.60 1.96
GCN 74.33 2.77

Table 7.2: Experimental results on the test set for different models and data structures.

the answers alone are a better predictor is unsurprising. CatBoost performs the best, being de-
signed for categorical data such as Likert-type questionnaires. Adding the embeddings along
with questionnaire data does not lead to improvements but rather results in slightly degraded
performances. Therefore, the CV embeddings are not as informative, and also considering
their high dimensionality, they deteriorate classification. In spite of that, the graph topology
we proposed turns out to be valuable for classification, performing slightly better than the cor-
responding tabular dataset of embeddings and answers to the questionnaire. It seems that our
rationale for linking Likert-type data is effectively linking similar candidates in a meaningful
fashion.
In summary, we gathered, processed, and evaluated an initial version of an HR recruitment

dataset. We utilized LLM to ensure anonymity and investigate the current limitations of these
models within this field. We examined the dataset through a data-driven approach, treating
it as a binary classification task. Traditional ML methods showed efficacy when paired with
assessment questionnaire data, and we presented a method to transform Likert-scale data into
graphs, maintaining their inherent patterns and relationships. The subsequent chapters pro-
vide a detailed discussion of the advancements made in this area.
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8
LLMs for Heterogeneous Graph of

Candidate Profiles

The landscape ofHRM is undergoing a profound transformation driven by the rapid advance-
ment of digital technologies and AI, particularly due to LLMs. The recruitment process in-
volves abundant digital data, leading to increased interest in utilizing automated techniques
for candidates-jobmatching (CJM).Nevertheless, currentmethods frequently fail to grasp the
subtle relationships between job requirements and candidate attributes, while also overlooking
the significance of diverse job vacancies. This chapter describes a novel pipeline that harnesses
the power of LLMs and GNNs to gain deeper insights into the recruitment process and im-
prove CJM, paving the path for future research1.

8.1 Methodology

The main idea is that similar candidates—with similar CVs—are also similarly suited for a job
opening. Although this is quite a strong assumption and belittles the complexity of resourcing,
this research question leads us to build models that can nevertheless support HR recruiters in

1This chapter is based onFrazzetto,Paolo,MuhammadUzairUlHaq, Flavia Fabris, andAlessandro Sperduti
[2024b]. “From Text to Talent: A Pipeline for Extracting Insights fromCandidate Profiles”. In: The 3rd Italian
Conference on Big Data andData Science, (ITADATA 2024), Pisa, Italy, September 17-19, 2024. Proceedings not
yet available.
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their everyday tasks. This specific pipeline is then distinguished by three key points:
1. Utilization of Recent LLMs: We employ state-of-the-art Large Language Models to

parse and extract multifaceted information from CVs, addressing the challenges posed
by unstructured data. This allows for a more sophisticated understanding of candidate
profiles, including both hard and soft skills, educational background, and work experi-
ence.

2. Multiple JobVacanciesAssessment: Unlikeprevious studies that often focusonmatch-
ing candidates to a single job description (JD), our pipeline is designed to handle multi-
ple job vacancies simultaneously. This approach more accurately reflects the reality of
authentic recruitment teams that deal with numerous and diverse selections.

3. Heterogeneous Graph Construction: Based on the entities extracted from CVs, we
construct a heterogeneous graph that represents the complex relationships among can-
didates. This graph-based representation allows for a more nuanced understanding of
how different attributes and experiences interconnect, providing a richer context for
candidate evaluation.

We then train various GNN architectures on this heterogeneous graph, allowing the model to
learn the patterns of such a recruitment ecosystem. In the upcoming sections, we provide the
theoretical underpinnings of our method, give a detailed explanation of our procedure, and
analyze the outcomes of our experimental tests.

8.2 Dataset Feature

The data is based on actual activities performed byAmajor’s HR recruiters and applying candi-
dates. As it happens, real-world data is often characterized by its heterogeneity, inconsistency,
and fragmentation acrossmultiple sources, necessitating a labor-intensive and time-consuming
data integration and cleansing process. This complexitymanifested in our research through the
need to gather information from various databases, use purposely-build software andAPI calls
to various cloud systems, and incorporate offline data sources, frequently requiring manual in-
tervention to ensure data quality and coherence. Thanks to this team effort, it was possible to
collect comprehensive HR data of S = 39 completed selection processes of different clients,
totaling C = 5, 461 candidates. This dataset comprises diverse roles and positions in multi-
ple sectors, featuring a heterogeneous population of employees from various backgrounds and
geographic locations. Some candidates have applied to multiple similar vacancies (or had been
reconsidered by the recruiters for other suited positions), yielding to 6, 624 unique candidate-
application combinations. The selection processes had 170±120 applicants, ranging from a
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minimum of 31 to a maximum of 648. To protect the candidates’ privacy, we removed all
personally identifiable information from the dataset (such as names, emails, and phone num-
bers). We also eliminated potential biasing factors such as age and gender. However, biases and
fairness are not the scope of this research and should be further investigated (Section 3.1).
For our proposes, the dataset has two main components for each candidate: their CV and

A+Questionnaire results. The CV provides rich, unstructured text data about the candidate’s
qualifications, experience, and skills, while the questionnaire’s traits offer a standardized, quan-
titative perspective on each candidate’s habits and behaviors, complementing the qualitative
information in their CV. Each questionnaire trait takes numerical values in the [−100, 100]
range and has been standard normalized. Missing values have been imputed by their median.

Target Labels

Candidateswere assigned anordinal labely for each selectionprocess or vacancy, reflecting their
progression through the recruitment pipeline. The labels y were defined as follows: Rejected
→ 0, Screened/Interviewed→ 1, Shortlisted→ 2, Hired→ 3. This labeling scheme
was developed after discussions with experienced recruiters. It was determined that predicting
the higher categories (1, 2, and 3) would provide the most value for the recruitment process, as
these represent candidates who progressed in the application stage. Our predictive modeling
efforts thus focus on these more meaningful outcomes, aiming to identify candidates likely to
reach the interview, offer, or hiring stages. Due to thenature of this setting, the classes are highly
unbalanced, posing substantial challenges for model training. The class distribution statistics,
grouped across all 39 recruitment processes, are reported in Table 8.1.

y Mean Min Max Std

0 94.77 78.87 99.22 3.88
1 3.95 0.39 18.31 3.20
2 1.47 0.27 4.17 1.09
3 0.95 0.27 3.23 0.71

Table 8.1: Candidate label distribution for selected 39 job openings (%).

Feature Extraction

Given thatCVs are typically unstructureddata, traditional rule-based approaches often struggle
to accurately parse and interpret the various formats. Moreover, ML-based approaches rely
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on annotated datasets for information extraction [Mike Zhang, 2022; Uzair-Ul-Haq, 2024].
Therefore, to transform the unstructured text of CVs into structured data, we leveraged LLMs
(namely, GPT-4 [Achiam, 2024]) since their advanced natural language processing capabilities
proved to be effective for information extraction [Tang, 2024]. Also, the GPT-4 model can
efficiently parse through diverse document formats, identifying relevant entities from the text
[Wei, 2024].

In this setting, we harnessed the capabilities of GPT-4 to extract five entities from each CV:
in mathematical terms E = {Soft Skills, Hard Skills, Industry Sector, Education, Language
Skills}, thereby creating a structured representation of each candidate’s profile containing the
keywords related to these entities. We denote one of these entities with ϵ ∈ E . To achieve this,
we first normalize the text by removing extra spaces, special characters, and sensitive private
data. Then, we use GPT-4 to extract entities using the prompting approach and store them in
a structured data format for all CVs. The prompts and outcomes were iteratively refined with
the support of HR recruiters, who evaluated these extractions.

8.2.1 Embedding Generation

To create vector representations of all features, we employed OpenAI’s text-embedding-
3-largemodel [OpenAI, 2024], representing the state-of-the-art embedding technology. This
model generates a vector vϵ,i ∈ R768 for each textual feature belonging to category ϵ for candi-
date i, allowing us to capture rich semantic information. In this real-world scenario, the num-
ber of entities varies across candidates. For instance, Candidate A might possess five soft skills,
while Candidate B has only three. To accommodate this variability, we represent each CV for
candidate i (CVi) as a set of sets of the five entity categories E , where each entity category is en-
coded as the sets of its vector embeddingsEϵ,i = {vϵ,i}. Formally, CVi = {Eϵ,i | ϵ ∈ E}. It
is worth mentioning that the vector embeddings allow us to overcome the issues of synonyms
and CVs written in different languages since such words are closer in the embedding space. In
total, this yields 39, 752 unique embeddings.

8.2.2 SimilarityMeasure andHeterogeneous Graph

Our approach is predicated on assuming that candidates with comparable CVs are likely simi-
larly suited for the same vacancies. To actualize this concept, we aimed to design a robust simi-
larity measure, ultimately constructing a graph of candidates as in the previous chapter. Given
that each CV is represented by a set of embeddings for all entities with varying cardinalities, we
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employed an approximate nearest neighbor (ANN) algorithm [Douze, 2024] to identify the
k-nearest neighbors (with k = 10) for each embedding vϵ,i across all CVs. See Table 8.2 for an
example of retrieved neighbors, showcasing the efficacy of this method. Next, we define the

Entity Nearest Neighbors
Soft Skills:
communication

communications, comunication, communications and
relations, communicating, communication and writing

Hard Skills:
python

python programming, python), coding (python,
programming languages (python, python (numpy

Industry Sector:
startups

start ups, start up companies, technology startups,
innovative start ups, technology startup

Education:
management diploma

master in management, marketing management diploma,
master degree in management, master in general
management, professional diploma in management

Languages:
english

english (good), english (medium), english (school),
english (native), english language

Table 8.2: Example of Top 5-NN based on a given query for all entities.

kNN vectors retrieved for one embedding vϵ,i as kNN(vϵ,i). Inspired by the Jaccard Index J
for sets [Z. Wang, 2023], we compute the overlap between two candidates i and j for a given
entity ϵ as

Jϵ(i, j) =

∑
vϵ,i,vϵ,j

JkNN(vϵ,i) ⊆ kNN(vϵ,j)K
|Eϵ,i|+ |Eϵ,j|

, (8.1)

where J·K is the indicator function. In other words, Jϵ(i, j) is the count of all embeddings that
share at least one neighbor, normalized by the total amount of the embeddings. The similarity
is then computed as:

simϵ(i, j) = max(1− e−λJϵ(i,j) − θ, 0) (8.2)

so that simϵ(i, j) ∈ [0, 1−θ],λ is a scaling factor and θ is a tunable threshold to discard smaller
values. Running this algorithm for all entities, we obtained aweighted heterogeneous graphH of
candidates connected by different types of weighted edges according to their similarity. We set
λ = 2 and θ = 0.2, such that we obtained a graph with≈ 108 edges grouped as in Table 8.3.
Computing all pairwise similarities requiresO(C2) ≈ 3× 108 evaluations, but then the com-
putation of J has linear complexity and can be computed efficiently—given the pre-computed
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Figure 8.1: Simplified example of Heterogeneous Graph of Candidate Profiles. Each candi-
date is a node and is connected with other nodes if in their CV there is an overlapping embed-
ding (its kNN to be precise) which encodes the feature labels (e.g., “Same Degree” could be
“Ph.D.”, that belongs to the Education entity type). In this picture, only 3 types of entities are
represented with vague feature labels for illustration purposes.

embeddings, all similarities can be calculated in a matter of minutes on consumer hardware.
An explanatory illustration of such a simplified graph is given in Fig. 8.1.

8.2.3 Model Architecture

In our graph-based approach, we employed Heterogeneous Graph Convolution as the core
component of our model architecture [Xiao Wang, 2023]. Within this framework, we imple-
mented two popular graph convolution methods: Graph Convolutional Networks (GCN)
[Kipf, 2017] and Relational Graph Convolutional Networks (RGCN) [Schlichtkrull, 2018].
GCN provides a powerful mechanism for aggregating information from local graph neighbor-
hoods. In this heterogeneous formulation, each edge type is treated individually, so the mes-
sage passing happens on all five induced subgraphs. Finally, each hidden representation for
each type is summed. RGCN extends this capability by explicitly modeling different types of
edges in the graph but, contrary to GCN, does not consider edge weights.

110



Category #Edges
Soft Skills 1,247,845
Hard Skills 162,605
Industry Sector 478,838
Education 287,724
Languages 7,723,929

Total 9,900,941

Table 8.3: Amount of heterogeneous edges with λ = 2 and θ = 0.2. Language edges are the
most prevalent, being the majority of candidates fluent in Italian.

Learning Framework

The final goal would be to predict the HR labels y so that new vacancies and candidates can
be added to the graph in a future stage. We treated these selections in a multi-task learning
approach to exploit their shared structure and learn relationships among candidates and vacan-
cies. Another viable solution would be to train a classifier by first merging all selections (as
in the previous chapter, where job opening attributes were neglected), train a model on the
subgraphs induced by each selection, or treat the selection as a distinct node type linked to per-
tinent candidates. These options are left open to future works. Additionally, given the nature
of our recruitment outcome data, which consists of four ordered classes, we explored two dis-
tinct problem formulations. First, we approached the task as ordinal regression, recognizing
the inherent order and progressive nature of the recruitment stages. Alternatively, we framed
the problem as amulti-label classification task, where each candidate could be assigned one or
more labels corresponding to the stages they reached, neglecting its ordinal nature. This ap-
proach offers flexibility when a candidate might skip certain stages, or the recruitment process
does not strictly follow a linear progression.

8.3 Experimental Setup

The graphH entails allC = 5, 461 candidates, whose features are the 18 numerical question-
naire’s traits; its edges are given by theirCVs similarity according to the five entities embeddings,
each one weighted by its similarity score. Every candidate has a categorical label belonging to at
least one of theS = 39 job selections. Dealingwith a single graphwith possibly newunlabeled
nodes, we fall into the transductive learning case. For training and validation, we split the nodes
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evenly for all tasks with [80%, 20%] splits as train/test sets. Due to class imbalances, we made
sure the splits were properly stratified. Rare labels y = 4 were also randomly split with the
same ratio. The models have been implemented with the PyTorch Geometric library [Fey,
2019]. We ran each trial for 300 epochs with the Adam optimizer. The hyperparameters were
chosen over the values in Table 8.4 with the Optuna library [Akiba, 2019] for 100 trials.

Hyperparameters Range/Values
Hidden Units {16, 32, 48, 64}
#Deep Layers {1, 2, 3, 4, 5}
Learning Rate 10−4 to 10−1

Activation Function LeakyRelu, Elu,
Tanh, Sigmoid

Table 8.4: Hyperparameters grid chosen to validate the models on the heterogeneous graph.

8.4 Results

Model Task Acc. MAE RMSE F1 AUC

RGCN Ordinal 25.2 0.532 0.924 0.729 0.566
Multi-label 20.1 1.07 1.58 0.615 0.503

GCN Ordinal 27.4 0.565 0.900 0.684 0.539
Multi-label 30.1 0.662 1.29 0.796 0.606

Table 8.5: ExperimentResults forRGCNandGCNwithOrdinalRegression andMulti-label
Learning

The results in Table 8.5 demonstrate the performance of the RGCN and GCNmodels under
two different learning scenarios: ordinal regression and multi-label learning. Due to classes’
distribution, we report the balanced accuracy and weighted F1-score. We also grouped classes
(0, 1) and (2, 3) to compute the AUC, as for a binary classification setting.

The GCNmodel generally outperforms the RGCNmodel in both learning types. Specifi-
cally, for the ordinal regression task, the GCNmodel achieved a higher accuracy compared to
the RGCN. The GCN model also demonstrated a lower RMSE and a competitive F1 score.
Despite these gains, the RGCN model exhibited a slightly better binary AUC, indicating a
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marginally better binary classification capability. In themulti-label learning scenario, theGCN
model again showed superior performance in terms of accuracy, which is significantly higher
than theRGCN.TheGCN’s F1weighted score andAUChighlight its robustness in handling
multiple labels, which is crucial for such tasks requiring simultaneous prediction of several cat-
egories.
While these results are not overwhelming in absolute terms, they are nonetheless promising,

and the balanced accuracy is above random guess (25%). Thus, such a model could be used
to give hints to recruiters. Additionally, when considering the challenges posed by real-world,
scarce, noisy, and imbalanced data in this complex learning setting. These findings not only
demonstrate the feasibility of the proposed approach but also open up numerous avenues for
future research directions, suggesting that further refinements could yield significant improve-
ments for recruitment decision support systems.

8.5 Final Remarks

This study explored the integration of GNNs and LLMs to support recruiters in personnel
selections. By leveraging the strengths of GNNs in capturing relational data and the advanced
text-understanding capabilities of LLMs, we developed a pipeline to process this type of HR
data. The experimental results demonstrated that our approach can be applied in this real-
world scenario. Finally, it showcases the potential of combining graph-based and language-
based models for complex classification tasks, offering a primal solution for CV analysis.

The primary objective of this study was to establish a robust pipeline capable of handling
the complexities of real-worldHRdata. While this chapter explores and evaluates several archi-
tectural choices, learning strategies, and models, it is acknowledged that the vast landscape of
possible approaches leaves ample room for future research and improvements.

In thenext chapter,we leave thehomogeneous graph in favorof inductive graphclassification
for the CJM.
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9
Inductive Graph Classification: A New
Paradigm for Candidate-JobMatching

The landscape of talent acquisition is undergoing a profound transformation, driven by the
need for more efficient and accurate methods of matching candidates to job vacancies (CJM).
While previous chapters have explored the application of GNNs to a global graph representing
the entire candidate-job ecosystem, this approach, though promising, has revealed certain limi-
tations in capturing the nuanced interplay between individual candidates and specific job roles,
particularly with limited and real-world data.

The transition from traditional CJMmethods to our graph approach required a thoughtful
data translation and connection process. Our goal was to create a flexible graph structure that
could capture the nuanced relationships between candidates and Job Descriptions (JD) while
allowing for new, unseen data generalization. This chapter marks a significant departure from
the previous global graph paradigm, introducing a novel perspective that treats each candidate-
job pair as a distinct, purpose-built graph. This additionally frames the CJM problem into a
graph classification task in an inductive learning setting, enabling our system tomake informed
predictions about the suitability of candidates for job positions that were not present in the
training data.

By treating each candidate-job pair as an individual graph, we gain the ability to model the
matching process with remarkable granularity. This approach allows us to capture subtle com-
patibilities that might be overlooked in a more generalized model. For instance, it can account
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for how a candidate’s unique combination of skills might align with a job’s multifaceted re-
quirements or how a candidate’s past experiences might translate into potential in a new role.
Moreover, this graph classification approach offers significant advantages in terms of scalabil-
ity and adaptability—our model can seamlessly accommodate new candidates and job descrip-
tions without the need for retraining the entire system.
In the following sections, we present the methodology of constructing these purpose-built

CJM graphs, exploring how various candidate and job attributes can be effectively encoded
in this format. We will then train GNN architectures on these graphs, aiming to learn and
infer complex matching patterns. Through a series of experiments and case studies, we will
demonstrate how this approach can benefit the CJM.

9.1 Dataset Feature

The evaluated dataset expands upon the previous work described in Section 8.2. It now in-
cludes S = 62 job selections along with corresponding JDs, which are structured and homo-
geneus documents. On the other hand, there areC = 8, 360 distinct candidates, all with their
own CV. These are normally stored as PDFs or docx, and while text extraction from standard
document formats is relatively straightforward, PDFs pose particular difficulties due to their
complex structure—such CVs often contain a variety of elements such as images, graphs, and
diverse fonts and styles, which can confound Optical Character Recognition (OCR) systems.
Moreover, the inherently unstructured nature of CVs further complicates the extraction pro-
cess, as there is no standardized format across applicants (with the exception of the Europass)
and conversely, CVs tends to be quite creative. This is also the reason why candidates are often
required tomanually input their information into online application systems, despite they had
already submitted aCV.The heterogeneity ofCV formats and content thus necessitates sophis-
ticated text extraction techniques to effectively parse and analyze these documents, and there-
fore there are commercial solutions available. We resorted to an open-source library, PyPDF,
that was capable to extract text for all but 362 of them that were therefore discarded. Among
these, 3, 895 have also completed the A+Questionnaire, and their 18 resultant traits have been
normalized and used as feature. For the 4, 465 candidates lacking the questionnaire, their traits
have been set to zero. Furthermore, each JD specifies minimal requirements for some of the
A+ Questionnaire traits, as determined by the HR recruiters based on the job role. Several
candidates have applied to various similar positions, or were reevaluated by the recruiters for
other fitting roles, resulting in a total of N = 9, 532 unique candidate-application pairings
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to be translated into graphs. The selection processes attracted 159±103 applicants, with figures
varying from a low of 26 to a high of 648. These serve as the foundation for constructing CJM
graphs, each of which is assigned an ordinal label y reflecting the selection stages: Rejected
→ 0, Screened/Interviewed→ 1, Shortlisted→ 2, Hired→ 3. Typically, a dozen
candidates get interviewed, only a few get shortlisted (in some cases, this step may be skipped
altogether), and at least one candidate is ultimately hired. All this renders the dataset signif-
icantly imbalanced, with most of the applicants being rejected. Its statistics are presented in
Table 9.1.

Label y Total Grouped by S
Mean Min Max Std

0 95.10 94.50 69.23 99.22 4.77
1 3.40 4.32 0.39 30.77 4.75
2 0.84 1.65 0.30 4.17 0.97
3 0.66 0.94 0.27 3.70 0.74

Table 9.1: Overall and grouped candidate label distribution and statistics (in %) for S = 62
selected job openings. The ’Total’ column represents the distribution across all job openings,
while the ’Grouped by S’ columns show statistics for the distribution within each selected job
opening.

Feature Selection

Feature selection is a cornerstone of candidate assessment, as it provides a structured framework
to evaluate attributes that directly impact their potential to succeed in a role. From an HRM
perspective, the selected features encapsulate both tangible and intangible qualities critical to
workplace performance. These features, identified and validated by HR experts, reflect years
of professional experience and research into effective recruitment practices.
Soft Skills, encompassing interpersonal and behavioral competencies, are indispensable to

fostering effective collaboration, adaptability to change, leadership potential, and conflict res-
olution in dynamic team environments. These skills often serve as the differentiating factor in
roles requiring high levels of emotional intelligence and cultural fit. Hard Skills, on the other
hand, represent the technical abilities and language proficiency necessary for candidates to per-
form specific job tasks with efficiency and precision. These skills are particularly critical in roles
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involving specialized tools, programming, or multilingual communication, as they ensure im-
mediate job readiness.

Education credentials, including academic qualifications and certifications, provide a mea-
sure of a candidate’s foundational knowledge and commitment to professional growth. They
serve as benchmarks for assessingwhether a candidatemeets the baseline requirements of a role.
Similarly, the Field of Education offers insight into the candidate’s specific area of study or spe-
cialization, helping recruiters align their expertise with the technical and strategic needs of the
organization.

The Industry Sector feature contextualizes a candidate’s experience within specific business
domains or market segments. This is critical for roles requiring an understanding of sector-
specific challenges, regulatory frameworks, or operational nuances. Finally, the Role feature
highlights the job titles andprofessional positions previously held by a candidate, offering awin-
dow into their career trajectory, level of responsibility, and potential for leadership. It also helps
assess whether their prior experience aligns with the scope and expectations of the prospective
role.

Collectively, these features, as identified byHR experts, provide a comprehensive andmulti-
dimensional view of a candidate’s profile. They enable recruiters to make informed decisions
by matching candidates not only to the technical requirements of a job but also to the organi-
zational culture, strategic goals, and team dynamics. This holistic approach ensures that both
the employer and the candidate benefit from an optimal fit, fostering long-term success.

Entity Extraction

Analogously to Section 8.2, GPT-4 extracted via prompting six entities from each CV and JD.
Thus, E = {Soft Skills, Hard Skills, Education, Field of Education, Industry Sector, Role}.
Languages have been merged intoHard Skills, while Field of Education is a focus on the quali-
fication major. Refer to Table 9.2 for an overview and examples.

We denote one of these entities with ϵ ∈ E , and we feed their texts into text-embedding-
3-large model [OpenAI, 2024] to translate them into numerical embeddings vϵ,i ∈ R768.
Each CV and JD includes multiple embeddings per entity, resulting in a set of sets across the
six entity categories E , that is {{vϵ,{i,j} : ϵ ∈ E} for all i indexing CVs or j for JDs. Missing
entities are imputed with the null vector 0 ∈ R768.
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Entities E #Embeddings Examples
Soft Skills 6,776 Campaign development, Desire to learn, Mentoring

start-ups, Problem solving mindset
Hard Skills 16,406 .NET framework, CAD, Credit analysis, Data manage-

ment, English (B2)
Education 6,960 Bachelor’s degree in Tourism, Diploma in Accounting,

Erasmus course, SAP certificate
Field of Education 2,780 3D design, Science, Economics, Marketing, Neuro-

science
Sector 7,628 Manufacturing, Law enforcement, Pharma, Restaurant

management
Role 15,749 1st officer, CTO, Medical representative, Researcher,

Technician

Table 9.2: Overview of the entity embeddings, with their amount and some examples.

9.2 Constructing Inductive Graphs for Candidate-
JobMatching

The core of our proposed method lies in the construction of purpose-built graphs that cap-
ture the intricate relationships between candidates and JD. This graph construction process is
crucial as it transforms the raw data extracted fromCVs and job postings into a structured rep-
resentation that can be effectively processed by GNNs. Our method creates individual graphs
for each CJM pair, allowing for a granular analysis of the compatibility between the two. Fur-
thermore, this inductive approach enables our model to generalize to new, unseen candidates
and job descriptions, making it highly adaptable to real-world HR scenarios. In the following
subsections, we detail the step-by-step process of constructing these graphs, starting from the
primary nodes and expanding to include various entity relationships and edge connections.

AddingNodes Theprocess of constructing eachCJMgraph startswith twoprimarynodes:
a Candidate node connected to a Job Description node. These nodes serve as the anchors of our
graph, representing the core elements we aim to match and use for label predictions. Initial
assessments indicated that adding a self-loop to these nodes enhanced performance and opti-
mized message passing to stacked convolutional layers. From these central points, we extend
symmetrical connections to each of the entities E , creating a star-like structure on each side of
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Hard
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Field
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Figure 9.1: Bipartite graph representationof theCandidate-JobMatching (CJM)model. Can-
didate and JobDescription have a self-loop and are connectedwith each other plus their respec-
tive entity nodes. In turn, these are connected only if there is amatch based on the embeddings
(dashed lines).
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the graph. The resulting bipartite graph representation has thus 14 nodes and at least 15 edges,
as shown in Fig. 9.1. Certainly, exploring additional design principles is a valid path, given that
the process of converting data into graphs is complex [Y. Liu, 2022; K. Zhou, 2022].

Connecting Edges The true power of our approach lies in how we connect these two
halves of the graph. We implemented a system of weighted edges, represented by dashed lines
in our visualization, that indicate the strength of thematch between the corresponding entities.
Similarly to Eq. (8.1), we introduce a similarity function that computes the normalized count
of common embedding within the k = 10 closest neighbors in the embedding space.

simϵ(i, j) =

(∑
vϵ,i,vϵ,j

JkNN(vϵ,i) ⊆ kNN(vϵ,j)K
|Eϵ,i|+ |Eϵ,j|

)1/p

∈ [0, 1] , (9.1)

where i denotes embeddings related to theCandidate node’s entities, and j is the analogous for
the Job Description. The exponent 1/pwith p = 4was introduced to enhance the weights of
sets that overlap more. This aims to capture cases in which, for instance, a candidate’s coding
abilities may closely align with the technical skills needed for a position, and are thus repre-
sented by a more weighted edge.
In summary, the dataset comprisesN = 9, 532 graphs, collectively containing |V | = 133, 448

nodes (each graph has 14 nodes by design) and |E| = 169, 213 edges. On average, each graph
contains 17.75±1.43 edges, ranging fromaminimumof 15 to amaximumof 21 edges per graph.

Insights from the Graph Structures Now, let us investigate the edges that connect
the bipartite graph further. There are 8, 853 graphs with at least one edge between candidate
and job entities, which is rich semantic information embedded as a graph. The overall distribu-
tion of the amount of edges between entities E is reported in Fig. 9.2. The edge count statistics
presented in Table 9.2(b) reveal a noteworthy pattern: there is a statistical difference in the av-
erage number of edges across different labels. Specifically, nodes with labels 0 and 1 exhibit
lower mean edge counts (2.74 and 3.03, respectively) compared to those with labels 2 and 3

(3.16 and 3.13, respectively). This variation in edge density among different label categories
presents a valuable structural feature that GNNs are particularly well-suited to exploit.

It is now compelling to observe the overall distribution of entities E and their respective
edges among the labels. To visualize these patters, we normalize their count over all graphs,
and highlight their difference w.r.t. the mean count in Fig. 9.3. The heatmap of edges ratios
reveals intriguing patterns across different labels y and entity categories E . Notably, theHard
Skill category consistently exhibits the highest edge ratios across all labels, suggesting its central
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Label y Mean Std. Dev.
0 2.74 1.43
1 3.03 1.44
2 3.16 1.55
3 3.13 1.36

(b) Edge count statistics grouped by label.

Figure 9.2: Analysis of graph edges between nodes matching entities in the CVs and JDs: (a)
distribution of edge counts, and (b) statistical summary grouped by graph label.
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Figure 9.3: Distribution of edge ratios across labels and entity categories E . The heatmap dis-
plays the relative difference from the mean (normalized) count for each category. Colors range
from dark blue (significantly below mean) through white (at mean) to dark red (significantly
above mean). Numerical values represent the original edge ratios (% of cases whether there is a
link between those entities in the bipartite CJM graphs).
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role in connecting candidates to job vacancies. Interestingly, the Hired label (y = 3) shows
the highest ratio for this category at 79.37%, indicating that hard skills match are particularly
crucial for successful hires. TheRole category also demonstrates high edge ratios, especially for
shortlisted (y = 2) and hired candidates, emphasizing its importance in the later stages of the
hiring process. In contrast, the Education and Industry Sector categories generally show
lower edge ratios, with some variation across labels. Industry Sector and Field of Education
aremore prevalent for y = 2 than the y = 3 as desired. This couldmean that those qualities are
biasing factors for being shortlisted, suggesting that these two labels could also be merged into
one. Finally, the Soft Skill category shows relatively consistent ratios across all labels, implying
its consistent importance throughout the hiring process.

Adding Features The last step of graphs’ construction involves incorporating node fea-
turesX into these CJM graphs, such that a GNN can identify patterns beyond just the graph
topology. The natural choice is to use the Questionnaire results and traits minimum require-
ments for the Candidate and JD node, respectively. These are denoted as xq,{i,j} ∈ R18.
Regarding the entity nodes, we opted to process their set of embeddings with set aggregation
techniques similar to graph pooling:

xϵ,{i,j} =
[
mean

(
{{vϵ,{i,j}}}

)
, sum

(
{{vϵ,{i,j}}}

)
,max

(
{{vϵ,{i,j}}}

)]
(9.2)

One could argue that their semantic meaning is already captured within the graph structure;
however, their vector representations can be integrated with one another and with question-
naire data using GNNs. These values come from hidden LLM representations, and such for-
mulation in a GNN can be seen as DeepSet [Zaheer, 2017] instance. An alternative strategy
might involve utilizing a GTM as discussed in Chapter 4, which would focus on learning prob-
abilistic representations of these embeddings. This method has been deferred to future work
because of time limitations. Besides, we experimented with a one-hot encoding of the entities;
however, this yielded inferior results.

9.3 Dataset Preparation and Splitting

For our experiments, we implemented a comprehensive data-splitting strategy to ensure robust
evaluation and statistical significance. Our dataset comprises S = 62 distinct recruitment pro-
cesses, each associated with its corresponding set of CJM graphs. To facilitate inductive learn-
ing for graph classification, we partitioned these selections S into training (70%), validation
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(20%), and test (10%) sets. Unlike traditional k-fold cross-validation, we employed a random
selection method that groups CJM graphs according to their related selection processes. This
approachmaintains the integrity of each recruitment scenario by ensuring all graphs pertaining
to a specific process are consistently assigned to the same subset, emulating realistic deployment
conditions. We repeated this splitting process five times, each iteration involving a new random
selection while maintaining the 70-20-10 ratio of S. This repetition yields five distinct parti-
tioned datasets, enhancing the reliability and reproducibility of our results, aswell asmitigating
potential biases from a single, arbitrary division.

Furthermore, to address the inherent imbalance in our dataset, we created a supplementary
version that more closely aligns with Amajor’s business process. We have seen that approxi-
mately half of the candidates did not complete the A+ Questionnaire and were consequently
neglected in the recruitment process. This situation introduced further bias to a dataset whose
labels are already highly unbalanced. To tackle this issue, we also retain only 10% of candi-
dates without questionnaire data, randomly selected. This version was split five times using
the same methodology described above. While this approach may discard potentially valuable
CV information and candidate data, it is justified by the importance of ensuring a good Person-
Environment fit in the recruitment process, andAmajor considers their questionnaire an essen-
tial tool for assessing this fit. Therefore, with this additional dataset version, we aim to reflect
the real-world recruitment scenario more accurately, albeit at the cost of reduced data volume.

9.4 Loss Function and Learning Task

In ourHR framework, the learning task is based on the outcomes of the recruitment process ac-
cording to the labels y = {0, 1, 2, 3}. Given the inherent order in these labels, we explored two
distinct approaches to formulate our learning task: ordinal and binary (graph) classification.

Ordinal Classification

Recognizing the progressive nature of the recruitment stages, we implemented ordinal classi-
fication using a Consistent Rank Logits (CORAL) layer [W. Cao, 2020]. The CORAL ap-
proach models the ordinal nature of our labels by learning a series of binary classifiers for the
output layer, each corresponding to a threshold between consecutive ranks. The loss function
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for ordinal classification can be expressed as:

Lordinal = −
1

N

N∑
i=1

K−1∑
k=1

[
ykg log(σ(fk(xi))) + (1− ykg ) log(1− σ(fk(xi)))

]
(9.3)

whereN is the number of samples,K = 4 is the number of classes, ykg is the binary indicator for
the g-th graph sample and k-th threshold, fk(xg) is the model’s output for the k-th threshold,
and σ(·) is the sigmoid function.

Binary Classification

In addition to ordinal classification, we also considered a binary classification setting. This
method groups the valued labels y∗ = {1, 2, 3} together, effectively creating a binary distinc-
tion between rejected candidates (0) and those who progressed in the recruitment process (y∗).
The loss function for binary classification is given by:

Lbinary = −
1

N

N∑
i=1

[yg log(ỹg) + (1− yg) log(1− ỹg)] (9.4)

where yg is the binary label (0 or 1 = y∗) and ỹg is the model’s prediction for the g-th graph
sample. To mitigate the imbalance in label distributions, multiplying a weight w = 10 to the
labels y∗ in both losses has led to improved performances.

From a recruitment and business standpoint, our dual approach to the learning task offers
valuable insights into the hiring process. The ordinal classification aligns closely with the se-
quential nature of many recruitment pipelines, where candidates progress through distinct
stages. Successfully learning this task would helpHRprofessionals understand the factors that
contribute to a candidate’s advancement at each stage, potentially optimizing the screening and
interview processes. Conversely, the binary classification provides a more streamlined view,
focusing on identifying candidates likely to progress beyond the initial rejection stage. This
approach can be particularly useful for large-scale recruitment purposes or when rapid initial
screening is necessary, allowing recruiters to quickly identify a pool of promising candidates
for further in-depth consideration.
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9.5 Model Architecture

TheGNNemployed in this study comprises several key components. Initially, a pre-aggregation
step is applied to the node features, projecting thexϵ,{i,j} of Eq. (9.4) andxq,{i,j} in a common
hidden dimension. Specifically, seven Linear layers are employed: one for the primary nodes
and six for the entity nodes, effectively capturing the unique characteristics of each node type.

The core of ourmodel consists ofmultiple graph convolutional (GC) layers. We experiment
with five different types of GC operators:

• Graph Convolutional Network (GCN) [Kipf, 2017]: The standard graph convolu-
tion operator that aggregates neighborhood information through normalized adjacency
matrices.

• Multiplicative Integration GNN (MIGNN) (v1, see Section 5.2): An adaptation that
employsmultiplicative integrationofnode features, enabling themodel to capturehigher-
order interactions between nodes’ attributes.

• Graph Isomorphism Network (GIN) [Xu, 2019]: A theoretically powerful architec-
ture that can distinguish different graph structures through injective neighborhood ag-
gregation.

• Graph Attention Network (GAT) [Velickovic, 2018]: Incorporates attention mecha-
nisms to weigh the importance of different neighbors dynamically.

• GraphConv [Defferrard, 2016]: A general formulation that combines both local and
global graph properties through separate weight matrices.

These layers are followed by Graph Normalization [Y. Chen, 2022] and non-linear activation
(LeakyReLU ). A tunable feature is an option for Jumping Knowledge connections [Xu, 2018],
allowing for adaptive, structure-aware representations. Themodel culminates in adeep readout
phase, where global graph pooling operations (sum, mean, and max) are applied, followed by
fully connected layers. Key hyperparameters include the number of layers, hidden channel
dimensions, dropout rate for regularization, and the number of deep readout layers.

9.6 Experimental Setup

The experiments were conducted using Python 3.11 and PyTorch 2.4. For optimization,
we employed the AdamW optimizer [Loshchilov, 2019] with a learning rate selected through hy-
perparameter tuning. Hyperparameter optimization was performed using the Optuna library
[Akiba, 2019]. We conducted 100 trials, each running for 300 epochs, with early stopping
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implemented using a patience of 50 epochs to prevent overfitting. The objective of the opti-
mizer was to minimize the loss on the validation set. The hyperparameters grid is reported in
Table 9.3, while all the other unspecified choices are left as their default values.

Hyperparameters Range/Values
Hidden Channels 32 to 256 (step 32)
Number of GC Layers {1, 2, 3, 4, 5}
Learning Rate {10−5, 10−4, 10−3, 10−2}
Dropout Rate {0.0, 0.5}
Jumping Knowledge (JK) {True, False}
Deep Readout Layers {0, 1, 2, 3}

Table 9.3: Hyperparameters grid for the GNNmodel in candidate-job vacancy matching.

To rigorously test the efficacy of our graph-based approach, we ran the experimental evalua-
tions against a traditional MLP. This MLP is designed to operate with the same experimental
framework as ourGNNmodel: its architecture beginswith the same pre-aggregation step used
in the GNN, processing the node features of the CJM graphs. Following this, instead of apply-
ing graph convolutions, the MLP utilizes the deep readout phase with a tunable number of
layers ranging from 1 to 5. In this fashion, we aimed to isolate the impact of the graph-based
learning approach and validate the hypothesized benefits of leveraging graph structural infor-
mation in the context of CJM.

9.7 Results

In this section, we present and analyze the experimental results of our study onGNN forCJM.
We compare the performance of six models, MLP, GCN, MIGNN, GAT, GIN, and Graph-
Conv, across the two dataset versions (Filtered and Complete) and two task types (Ordinal
and Binary). Table 9.4 summarizes the train, validation, and test losses for each model config-
uration, while additional metrics for a more comprehensive evaluation of our models’ perfor-
mance in the test sets are presented in Table 9.5. The latter table compares the balanced accu-
racy, weighted F1 score, Mean Absolute Error (MAE), and RootMean Square Error (RMSE).
We chose to use balanced accuracy and weighted F1 score due to the unbalanced nature of our
dataset, as these metrics provide a more reliable assessment of model performance when class
distributions are skewed. MAE andRMSE are included to provide insight into themagnitude
of prediction errors, particularly relevant for the ordinal task.

127



Dataset Task Model Train Loss Validation Loss Test Loss

Filtered

Ordinal

MLP 323.7±36.2 115.2±15.0 67.5±10.3
GCN 307.3±25.5 112.3±14.3 65.0±10.9

MIGNN 310.5±20.8 108.9±15.3 63.4±9.6
GIN 325.3±26.0 112.0±13.9 65.0±11.6
GAT 321.2±19.6 109.7±16.0 62.7±9.1

GraphConv 316.6±34.7 110.8±14.8 65.0±10.4

Binary

MLP 131.6±18.3 52.4±5.5 31.5±5.0
GCN 109.7±11.0 50.3±5.4 30.5±4.1

MIGNN 101.1±6.4 47.7±5.3 30.0±4.2
GIN 111.9±9.3 50.2±6.7 29.8±4.3
GAT 127.1±6.9 50.0±7.2 30.3±5.1

GraphConv 102.4±7.4 49.0±7.5 29.7±5.5

Complete

Ordinal

MLP 389.3±49.0 112.2±14.2 65.9±8.2
GCN 343.2±29.6 103.0±17.0 64.4±11.7

MIGNN 402.4±19.3 107.5±16.2 60.3±11.2
GIN 418.4±28.1 111.7±15.4 63.2±10.0
GAT 430.0±57.2 109.1±15.6 62.1±8.8

GraphConv 436.5±65.5 109.3±16.0 62.2±9.0

Binary

MLP 180.5±26.0 50.4±5.8 30.4±4.5
GCN 140.3±17.0 45.0±7.8 28.5±3.7

MIGNN 146.5±13.2 48.3±6.8 29.1±4.0
GIN 181.7±18.1 50.2±7.0 29.0±4.3
GAT 190.2±9.8 49.7±6.8 29.7±3.0

GraphConv 185.6±13.5 49.4±6.2 29.8±4.2

Table 9.4: Comparison of losses across different datasets and tasks for different models.
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Dataset Task Model B. Accuracy W. F1 MAE RMSE

Filtered

Ordinal

MLP 25.0±0.0 92.9±0.8 0.068±0.007 0.348±0.017
GCN 25.0±0.0 92.9±0.8 0.068±0.007 0.348±0.017

MIGNN 25.0±0.0 92.9±0.8 0.068±0.007 0.348±0.017
GIN 25.0±0.0 92.9±0.8 0.068±0.007 0.348±0.017
GAT 25.0±0.0 92.9±0.8 0.068±0.007 0.348±0.017

GraphConv 25.0±0.0 92.9±0.8 0.068±0.007 0.348±0.017

Binary

MLP 50.8±2.3 89.5±6.1 0.107±0.105 0.298±0.134
GCN 61.8±1.8 80.5±5.6 0.268±0.082 0.511±0.082

MIGNN 56.7±3.8 86.1±2.5 0.184±0.045 0.426±0.050
GIN 58.6±2.3 85.5±1.9 0.194±0.032 0.439±0.038
GAT 60.5±3.9 81.5±7.3 0.251±0.103 0.492±0.096

GraphConv 59.1±3.5 83.5±4.0 0.225±0.063 0.469±0.070

Complete

Ordinal

MLP 25.0±0.0 92.9±0.8 0.068±0.007 0.348±0.017
GCN 25.1±0.2 92.8±1.1 0.072±0.014 0.353±0.024

MIGNN 25.0±0.0 92.9±0.8 0.068±0.007 0.347±0.018
GIN 25.0±0.0 92.9±0.8 0.068±0.007 0.348±0.017
GAT 25.0±0.0 92.9±0.8 0.068±0.007 0.348±0.017

GraphConv 25.0±0.0 92.9±0.8 0.068±0.007 0.346±0.016

Binary

MLP 55.0±4.8 85.0±6.9 0.191±0.114 0.412±0.146
GCN 65.4±3.6 87.0±1.8 0.173±0.029 0.414±0.036

MIGNN 62.2±1.4 86.7±2.0 0.176±0.034 0.418±0.044
GIN 58.1±4.2 85.3±4.9 0.191±0.088 0.422±0.116
GAT 56.9±2.8 87.3±4.2 0.159±0.074 0.387±0.097

GraphConv 58.9±3.7 84.8±2.2 0.206±0.035 0.452±0.038

Table 9.5: Comparison of models performance metrics (Balanced Accuracy (%),Weighted F1,
MAE, RMSE) on the test set across different datasets and tasks. The values averaged over the
test set across five runs have rounded standard deviations to the nearest decimal point.
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Ordinal Task In this task, all models show nearly identical performance across all metrics,
with a balanced accuracy of 25% for both Filtered and Complete datasets. This performance
is equivalent to a prior classifier that always predicts the most frequent class (y = 0). The con-
sistency across models suggests that the ordinal prediction task, as currently formulated, may
be too challenging or the features insufficient for meaningful discrimination between ordered
classes. Despite the lowbalanced accuracy, theweighted F1 scores are surprisingly high (around
92.9). This apparent contradiction can be explained by the class imbalance in our dataset. The
high F1 score likely reflects good performance in themajority class, while the balanced accuracy
reveals poor performance across all classes. The MAE of approximately 0.068 indicates that,
on average, predictions are off by less than one class. Given that we have four ordinal classes,
this suggests thatwhen themodelsmake errors, they tend to predict adjacent classes rather than
making extreme misclassifications.

Binary Task This learning setting shows more promising results, with balanced accura-
cies consistently above 50%, indicating that all models perform better than a naive classifier.
In the Filtered dataset, GCN achieves the highest balanced accuracy (61.8%), followed by
GAT (60.5%) and GraphConv (59.1%), while GIN (58.6%) and MIGNN (56.7%) show
less competitive performance. The MLP baseline, despite its simplicity, achieves 50.8%. For
the Complete dataset, GCN maintains its lead with 65.4% balanced accuracy, followed by
MIGNN (62.2%) and GIN (58.1%), while GAT and GraphConv show comparable perfor-
mance around 57%. TheMAE for the binary task ranges from 0.107 to 0.268, higher than the
ordinal task as expected, since any misclassification results in an error of 1.

Furthermore, this scenario offers a clearer understanding of how the models address class
imbalance: with a significant disparity of 945 samples in class 0 compared to just 47 in class 1,
the models’ effectiveness on the minority class can be compared and visualized in the normal-
ized confusion matrices of Fig. 9.4. The MLP, while achieving a high accuracy of 92.80% of
corrected predictions on the majority class in the filtered dataset, struggles significantly with
the minority class, correctly classifying only 8.51% of them. In contrast, the GCN demon-
strates amore balanced approach, correctly identifying 48.94% of theminority class at the cost
of reduced majority class accuracy (74.39%). The MIGNN achieves a compromise, offering
84.55% accuracy on the majority class and 29.17% on the minority. Interestingly, the com-
plete dataset improves minority class detection across all models. This suggests that additional
data in training, although all belonging to class 0, benefits the learning process.
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Figure 9.4: Comparison of confusion matrices for six different models in the CJM task. Each
cell displays the normalized percentage (over true labels) averaged over the test splits. The class
distribution is divided into 945 samples for class 0 and 47 in class 1. The color intensity in-
dicates the proportion of samples in each true class that were predicted as each possible class,
with darker blues representing higher proportions.
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Graph Convolutions The consistently strong performance of graph-based models val-
idates our hypothesis that graph structures can effectively capture meaningful relationships
in HR data. While each architecture shows distinct strengths, GCN emerges as the most re-
liable across our experiments, particularly excelling in balanced accuracy. This suggests that
its straightforward neighborhood aggregation mechanism is well-suited for our CJM graphs.
The attention mechanism in GAT and the multiplicative interactions in MIGNN also prove
beneficial, especially in handling class imbalance, while GIN and GraphConv offer secondary
alternatives. The superior performance of these graph-based approaches over the MLP base-
line highlights the value of incorporating structural information in the CJM task. This has
practical implications for HR recruiters—out of hundreds of applications, they could priori-
tize their manual assessment on candidates classified as promising by these models, striking a
reasonable balance between efficient evaluation of large applicant pools and identification of
high-potential candidates.

9.7.1 Best SelectedHyperparameters

Table 9.6 presents the validated best-selected hyperparameters for the best-performing mod-
els across different datasets and tasks. It is immediately noticeable how the hyperparameters
vary in all cases between the two dataset versions. The amount of GC is usually small, partic-
ularly for binary classification, suggesting that messages propagate well with just one step in
these small CJM graphs. Also, the number of hidden channels varies widely across all models,
from 32 to 192, reflecting the task-specific optimal model capacities. Regularization strategies
and architectural choices differ across configurations, with varying dropout rates and Jumping
Knowledge (JK) connections. Overall, the selected hyperparameters may hint at the fact that
shallow and simpler architectures should be preferred and could prevent overfitting with such
a relatively small dataset.

9.7.2 Limitations and Possible Improvements

Our research provides notable insights into using GNNs for CJM, but it is also crucial to ac-
knowledge its limitations and seek ways to progress.

One of themost striking observations fromour results is the poor performance of all models
in the ordinal task. The fact that our architectures perform no better than a simple prior classi-
fier is a clear indication that our current approach to ordinal classification in this context is sub-
optimal. The very nature of treating CJM as an ordinal classification problem may be flawed,
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Dataset Task Model Hidden
Channels

#GC
Layers

Dropout
Rate

JK #Deep
Readout
Layers

Learning
Rate

Filtered

Ordinal
MLP 32 - 0.0 False 1 0.001
GCN 128 5 0.5 False 3 0.01

MIGNN 160 3 0.0 False 2 0.0001

Binary
MLP 128 - 0.5 False 3 0.01
GCN 64 3 0.0 True 3 0.0001

MIGNN 128 1 0.0 True 0 0.0001

Complete

Ordinal
MLP 64 - 0.5 False 4 0.01
GCN 160 2 0.5 True 2 0.0001

MIGNN 192 2 0.0 True 2 0.01

Binary
MLP 160 - 0.0 False 1 0.001
GCN 128 1 0.0 False 0 0.001

MIGNN 96 1 0.0 True 2 0.01

Table 9.6: Best selected hyperparameters for MLP, GCN, andMIGNN.

as the assumption of clear, ordered levels of suitability between candidates and job positions
might be an oversimplification of a complex, multidimensional problem. To address this issue,
we could consider reformulating the problem as a multi-class classification task, where each
suitability level is treated as a separate class without an inherent order. This approach would
allow the models to learn more nuanced relationships between features and outcomes with-
out imposing an ordinal scale. Additionally, exploring regression-based approaches or even
multi-task learning, where we predictmultiple aspects of CJMor amatching preference, could
equally support HR recruiters.

Another potential limitation lies in the features we are using to represent candidates and
jobs. Important aspects of a candidate’s suitability, such as soft skills, cultural fit, ambitions,
or specific experiences that are not easily quantified, are definitely missing from our data only
based on CVs and assessment questionnaires. To improve this, we could look into incorporat-
ing more detailed candidate and job information, like interview transcripts or data about the
hiring company. Additional pertinent information, including age, gender, years of professional
experience, salary, and geographical location, are also considered for the recruitment process.
Nevertheless, these have been excluded from our analysis due to privacy and ethical concerns,
thereby possibly hindering the effectiveness of the models. In general, more HR data needs
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to be collected to increase the pool of candidates and selections and consequently extend this
analysis, yet this is a costly and time-consuming task.
The graph structure of our data presents another area for potential improvement. While

the graph-based models showed benefits in the binary classification task, the graph construc-
tion relies on a heuristic method. We could explore different methods of graph construction,
perhaps incorporating more domain knowledge to create edges that better represent meaning-
ful relationships between candidates and jobs, or even let the model learn the optimal graph
topology.
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9.8 Final Remarks

This exploratory study shows promise in the capability of the latest and novel AI tools to sup-
port HR decisions. Our current approach has provided valuable insights into real HR data
and how it can be processed. Our workmakes several notable contributions, all paving the way
for new advancements in this domain:

1. Integration of LLM and GNN Technologies: By leveraging Large Language Models
for feature extraction and Graph Neural Networks for prediction, we demonstrated an
innovative combination of the latest cutting-edge AI technologies in the HR domain.

2. Novel Graph-Based Representation: We introduced a new paradigm for representing
candidate-job matching as a graph classification problem. Compared to other methods
in the literature, this approach allows for a more nuanced capture of the complex rela-
tionships between candidates’ attributes and job requirements.

3. Comprehensive Experimental Framework: Our study provides a rigorous compari-
son of different model architectures across various tasks and dataset versions, showcas-
ing its versatility and documenting the strengths and limitations of each approachwhen
applied to new data.

4. Real-World Application: We addressed the challenges of utilizing AI in a real-world
HR setting by collaborating with HR recruiters and processing actual CVs. This re-
sulted in a graph-based AI model that could effectively support recruiters in the screen-
ing and assessment of new candidates.

5. Identification of Key Challenges: Our results and discussions highlight important ar-
eas for future research and improvements in candidate-job matching, potentially guid-
ing the direction of subsequent studies in this field.

Future investigationsmight delve into the utilization of theGTMapproach for the aggregation
of distinct entity sets as discussed inChapter 4. Furthermore, the employment ofGraphSHAP-
IQ, as presented inChapter 6, could be applied to these synthesized graphs to comprehensively
study the interactions and interrelationships among the nodes.

While our current results show promise, they also reveal the complexity of HR data and the
CJM problem. The performance gap between our models and ideal predictors underscores
the need for continued research and development in this area, in particular for trustworthy
and production-ready applications.
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10
Conclusion

This dissertation has explored the application of Graph Neural Networks (GNNs) to the do-
main of Human Resource Management (HRM), with a particular focus on the challenging
task of candidate-job matching (CJM). Through a series of theoretical contributions and ap-
plied studies, we have demonstrated the potential of graph-based approaches to enhance and
innovate HR analytics and personnel selection. This work bridges the gap between cutting-
edge machine learning techniques and real-world HR challenges, offering new perspectives
and methodologies for addressing the complexities of modern recruitment.

Addressing the ResearchQuestions

At the outset of this research, we posed several key questions to guide our investigation. Let us
revisit these questions and summarize the insights gained through our research.

ResearchQuestion 1

How can real-worldHRdata, including candidate profiles, job descriptions, and assessment ques-
tionnaires, be effectively represented and processed using Deep Learning?

Our research has demonstrated that Deep Learning techniques, particularly GNNs, can ef-
fectively represent and process complexHRdata. To achieve this, we developed novelmethods
to convert various types of HR data into graph structures:
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• We transformed Likert-scale questionnaire data into graphs, preserving inherent rela-
tionships between respondents (Chapter 7).

• Wecreatedheterogeneous graphs capturing themultifacetednature of candidateprofiles,
each characterized by the selection process’s status (Chapter 8).

• We introduced anewparadigmfor representing individual candidate-jobpairs as purpose-
built graphs for inductive learning (Chapter 9).

These graph-based representationsproved tobemore effective than traditional tabular approaches,
hinting at the fact that the relational information captured by graphs provides valuable context.
Moreover, throughout this investigation, we highlighted the challenges of collecting, cleaning,
processing, and analyzing data from multiple sources in a business setting. Data are precious
and should be fully understood to leverage Deep Learning models thoroughly—this particu-
larly holds in the delicate, complex setting of resourcing.

ResearchQuestion 2

How canHR data be translated into graph-based structures? What additional insights and ben-
efits would this approach provide?

Our investigation identified multiple techniques for the conversion of HR data into graph-
based structures:

• For the questionnaire data, wedeveloped a similaritymeasure basedon response patterns
to create edges between candidates (Chapter 7). This enables ML models to leverage
candidates based on a more comprehensive and standardized assessment based on their
estimated habits and behaviors.

• ForCVdata, we leveragedLLMs to extractmeaningful features, whichwere thenused to
create nodes and edges in heterogeneous graphs (Chapter 8), allowing for a fine-grained
comparison of CVs based on semantic entities.

• Inourfinal approach (Chapter 9),we constructedpurpose-built and interpretable graphs
for each candidate-job pair, incorporating various entity types as nodes and using simi-
larity measures to create edges, discovering patterns in the personnel selection.

The implementation of these graph-based structures facilitated the deployment of both stan-
dard and novel GNN architectures, which demonstrated superior performance compared to
conventional machine learning techniques across a range of diverse HR analytics tasks.
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ResearchQuestion 3

What are themost effective GNNarchitectures and trainingmethodologies for learning suchHR
graphs?
Through extensive experimentation, we found that:
• GraphConvolutionalNetworks (GCNs) andournovelMultiplicative IntegrationGNNs
(MI-GNNs) showed strong performance across various HR tasks.

• Binary graph classification yielded the best results on such complex and unbalancedHR
graph data.

• The effectiveness of different architectures varied depending on the specific task and
data structure. Specific training methodologies, exploring different loss functions, and
careful hyperparameter tuning were crucial for optimal performance.

ResearchQuestion 4

What are the key considerations and best practices for applying GNNs to HR data, taking into
account the unique characteristics and constraints of this domain?

Our research highlighted several key considerations:
• While our research focused primarily on model development and performance, it also
highlighted the critical need to address privacy, ethical considerations, and potential bi-
ases in AI-driven recruitment tools.

• In many HR tasks, class labels are highly unbalanced towards few but high-value data
points, requiring careful handling in model design and evaluation.

• The interpretability of model predictions is crucial in the sensitive HR domain. Graph
data effectivelymeets this requirement by providing intelligible representations through
its nodes and edges, which HR practitioners can interpret.

• Domain knowledge is essential in feature engineering and graph construction to capture
relevant relationships in HR data. Therefore, close collaboration with the industry and
HR teams is fundamental for such research.
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ResearchQuestion 5

How accurate and efficient are the AI-based methods that have been examined? What are the
limitations of these methodologies, and in what ways can they assist HR recruiters in personnel
selection?

In the course of this study, we observed that:

• The combination of LLMs for feature extraction and GNNs for predictive modeling
proved to be a powerful approach for handling the unstructured nature of CV and job
description data, offering a promising direction for developing AI tools.

• The integrationofmultiple data sources (CVs, questionnaires, jobdescriptions) intouni-
fied graph representations promotes a more holistic evaluation of candidates, following
the increasing recognition inHRMof the importance of considering various factors be-
yond traditional qualifications in assessing candidate suitability. Moreover, such graph-
based approaches in HR open up opportunities for more personalized recruitment pro-
cesses, where the unique combination of a candidate’s attributes can be matched more
precisely with the specific requirements and context of a job opening, such as the fit
within the company and the entrepreneurial values.

• Graph-based approaches offer the potential to provide HR professionals with more so-
phisticated decision support tools. We demonstrated that these models—in particular
for CJM in Chapter 9—could aid HR recruiters by suggesting who to asses first, priori-
tizing high-potential candidates from a vast pool of applicants, identifying non-obvious
matches between candidates and job requirements and by providing explainable graph
recommendations to support human decision-making.

• AI-based technologies are meant to exclusively assist HR recruiters, letting them dedi-
cate their efforts to the intricate and human-centered elements of hiring, which demand
empathy, intuitive understanding, and sophisticated reasoning.
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Final Remarks and Future Outlook

This investigationwas undertakenwith an inquisitivemindset to apply the latest advancements
inAI to recruitment in a real business setting. Throughout our research,we focusedonkeeping
humans at the center of the recruitment process, recognizing that behind every data point and
graph node are real peoplewith hopes, aspirations, and potential. We have aimed to harness the
power ofAI to understand better and serve these individuals, matching themnot just with jobs
butwith opportunities for growth and fulfillment. In this regard, this studywishes to represent
a significant step towardsAI that augments and supports, rather than replaces, humandecision-
making in recruitment.
We approached this challenge well aware of its intricate nature. The intersection of AI, HR,

and individual careers represents a complex ecosystem with profound implications. While de-
veloping sophisticated GNNmodels is technically demanding, the true complexity lies in cre-
atingAI systems that can navigate the nuanced, often subjective world of human potential and
organizational fit. As AI is rapidly revolutionizing the world we live in, we envision a future
where AI serves as a trusted ally to both recruiters and job seekers, helping unlock human po-
tential and guide individuals toward fulfilling career paths. However, we must remain vigilant
to the ethical considerations and potential biases inherent in AI recruiting systems, and ensure
that technological advancements enhance, rather than diminish, the human element in one of
the most personal aspects of our lives—our careers.
We aim for future AI research inHR to foster fair, effective, and human-centric hiringmeth-

ods, ultimately benefiting both organizations and individuals in their journey for meaningful
professional engagement. The quest towards truly intelligent and ethical AI-driven recruit-
ment systems is still in its infancy, and we hope that our contributions will serve as inspiration
and guidance for future research endeavors in this exciting and impactful domain, that con-
nects people with meaningful work and helps organizations build diverse, talented teams, all
while prioritizing the human aspect of human resources.
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